solver.py 5.6 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import paddle.fluid as fluid
import numpy as np
import importlib
from utils.config import cfg
21
from paddle.fluid.contrib.mixed_precision.decorator import OptimizerWithMixedPrecison, decorate, AutoMixedPrecisionLists
W
wuzewu 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36


class Solver(object):
    def __init__(self, main_prog, start_prog):
        total_images = cfg.DATASET.TRAIN_TOTAL_IMAGES
        self.weight_decay = cfg.SOLVER.WEIGHT_DECAY
        self.momentum = cfg.SOLVER.MOMENTUM
        self.momentum2 = cfg.SOLVER.MOMENTUM2
        self.step_per_epoch = total_images // cfg.BATCH_SIZE
        if total_images % cfg.BATCH_SIZE != 0:
            self.step_per_epoch += 1
        self.total_step = cfg.SOLVER.NUM_EPOCHS * self.step_per_epoch
        self.main_prog = main_prog
        self.start_prog = start_prog

F
fuyi02 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    def lr_warmup(self, learning_rate, warmup_steps, start_lr, end_lr):
        linear_step = end_lr - start_lr
        lr = fluid.layers.tensor.create_global_var(
            shape=[1],
            value=0.0,
            dtype='float32',
            persistable=True,
            name="learning_rate_warmup")

        global_step = fluid.layers.learning_rate_scheduler._decay_step_counter()

        with fluid.layers.control_flow.Switch() as switch:
            with switch.case(global_step < warmup_steps):
                decayed_lr = start_lr + linear_step * (global_step / warmup_steps)
                fluid.layers.tensor.assign(decayed_lr, lr)
            with switch.default():
                fluid.layers.tensor.assign(learning_rate, lr)
        return lr

W
wuzewu 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    def piecewise_decay(self):
        gamma = cfg.SOLVER.GAMMA
        bd = [self.step_per_epoch * e for e in cfg.SOLVER.DECAY_EPOCH]
        lr = [cfg.SOLVER.LR * (gamma**i) for i in range(len(bd) + 1)]
        decayed_lr = fluid.layers.piecewise_decay(boundaries=bd, values=lr)
        return decayed_lr

    def poly_decay(self):
        power = cfg.SOLVER.POWER
        decayed_lr = fluid.layers.polynomial_decay(
            cfg.SOLVER.LR, self.total_step, end_learning_rate=0, power=power)
        return decayed_lr

    def cosine_decay(self):
        decayed_lr = fluid.layers.cosine_decay(
            cfg.SOLVER.LR, self.step_per_epoch, cfg.SOLVER.NUM_EPOCHS)
        return decayed_lr

    def get_lr(self, lr_policy):
        if lr_policy.lower() == 'poly':
            decayed_lr = self.poly_decay()
        elif lr_policy.lower() == 'piecewise':
            decayed_lr = self.piecewise_decay()
        elif lr_policy.lower() == 'cosine':
            decayed_lr = self.cosine_decay()
        else:
            raise Exception(
                "unsupport learning decay policy! only support poly,piecewise,cosine"
            )
F
fuyi02 已提交
85 86 87 88 89 90

        if cfg.SOLVER.LR_WARMUP:
            start_lr = 0 
            end_lr = cfg.SOLVER.LR
            warmup_steps = cfg.SOLVER.LR_WARMUP_STEPS 
            decayed_lr = self.lr_warmup(decayed_lr, warmup_steps, start_lr, end_lr)
W
wuzewu 已提交
91 92 93 94 95 96 97 98 99 100 101
        return decayed_lr

    def sgd_optimizer(self, lr_policy, loss):
        decayed_lr = self.get_lr(lr_policy)
        optimizer = fluid.optimizer.Momentum(
            learning_rate=decayed_lr,
            momentum=self.momentum,
            regularization=fluid.regularizer.L2Decay(
                regularization_coeff=self.weight_decay),
        )
        if cfg.MODEL.FP16:
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
            if cfg.MODEL.MODEL_NAME in ["pspnet"]:
                custom_black_list = {"pool2d"}
            else:
                custom_black_list = {}
            amp_lists = AutoMixedPrecisionLists(custom_black_list=custom_black_list)
            assert isinstance(cfg.MODEL.SCALE_LOSS, float) or isinstance(cfg.MODEL.SCALE_LOSS, str), \
                "data type of MODEL.SCALE_LOSS must be float or str"
            if isinstance(cfg.MODEL.SCALE_LOSS, float):
                optimizer = decorate(optimizer, amp_lists=amp_lists, init_loss_scaling=cfg.MODEL.SCALE_LOSS,
                                        use_dynamic_loss_scaling=False)
            else:
                assert cfg.MODEL.SCALE_LOSS.lower() in ['dynamic'], "if MODEL.SCALE_LOSS is a string,\
                 must be set as 'DYNAMIC'!"
                optimizer = decorate(optimizer, amp_lists=amp_lists, use_dynamic_loss_scaling=True)

        optimizer.minimize(loss)
W
wuzewu 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
        return decayed_lr

    def adam_optimizer(self, lr_policy, loss):
        decayed_lr = self.get_lr(lr_policy)
        optimizer = fluid.optimizer.Adam(
            learning_rate=decayed_lr,
            beta1=self.momentum,
            beta2=self.momentum2,
            regularization=fluid.regularizer.L2Decay(
                regularization_coeff=self.weight_decay),
        )
        optimizer.minimize(loss)
        return decayed_lr

    def optimise(self, loss):
        lr_policy = cfg.SOLVER.LR_POLICY
        opt = cfg.SOLVER.OPTIMIZER

        if opt.lower() == 'adam':
            return self.adam_optimizer(lr_policy, loss)
        elif opt.lower() == 'sgd':
            return self.sgd_optimizer(lr_policy, loss)
        else:
            raise Exception(
                "unsupport optimizer solver, only support adam and sgd")