data_aug.py 3.6 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import cv2
import numpy as np
from utils.config import cfg
from models.model_builder import ModelPhase
L
LielinJiang 已提交
21 22
from pdseg.data_aug import get_random_scale, randomly_scale_image_and_label, random_rotation, \
    rand_scale_aspect, hsv_color_jitter, rand_crop
L
LielinJiang 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

def resize(img, grt=None, grt_instance=None, mode=ModelPhase.TRAIN):
    """
    改变图像及标签图像尺寸
    AUG.AUG_METHOD为unpadding,所有模式均直接resize到AUG.FIX_RESIZE_SIZE的尺寸
    AUG.AUG_METHOD为stepscaling, 按比例resize,训练时比例范围AUG.MIN_SCALE_FACTOR到AUG.MAX_SCALE_FACTOR,间隔为AUG.SCALE_STEP_SIZE,其他模式返回原图
    AUG.AUG_METHOD为rangescaling,长边对齐,短边按比例变化,训练时长边对齐范围AUG.MIN_RESIZE_VALUE到AUG.MAX_RESIZE_VALUE,其他模式长边对齐AUG.INF_RESIZE_VALUE

    Args:
        img(numpy.ndarray): 输入图像
        grt(numpy.ndarray): 标签图像,默认为None
        mode(string): 模式, 默认训练模式,即ModelPhase.TRAIN

    Returns:
        resize后的图像和标签图

    """

    if cfg.AUG.AUG_METHOD == 'unpadding':
        target_size = cfg.AUG.FIX_RESIZE_SIZE
        img = cv2.resize(img, target_size, interpolation=cv2.INTER_LINEAR)
        if grt is not None:
            grt = cv2.resize(grt, target_size, interpolation=cv2.INTER_NEAREST)
        if grt_instance is not None:
            grt_instance = cv2.resize(grt_instance, target_size, interpolation=cv2.INTER_NEAREST)
    elif cfg.AUG.AUG_METHOD == 'stepscaling':
        if mode == ModelPhase.TRAIN:
            min_scale_factor = cfg.AUG.MIN_SCALE_FACTOR
            max_scale_factor = cfg.AUG.MAX_SCALE_FACTOR
            step_size = cfg.AUG.SCALE_STEP_SIZE
            scale_factor = get_random_scale(min_scale_factor, max_scale_factor,
                                            step_size)
            img, grt = randomly_scale_image_and_label(
                img, grt, scale=scale_factor)
    elif cfg.AUG.AUG_METHOD == 'rangescaling':
        min_resize_value = cfg.AUG.MIN_RESIZE_VALUE
        max_resize_value = cfg.AUG.MAX_RESIZE_VALUE
        if mode == ModelPhase.TRAIN:
            if min_resize_value == max_resize_value:
                random_size = min_resize_value
            else:
                random_size = int(
                    np.random.uniform(min_resize_value, max_resize_value) + 0.5)
        else:
            random_size = cfg.AUG.INF_RESIZE_VALUE

        value = max(img.shape[0], img.shape[1])
        scale = float(random_size) / float(value)
        img = cv2.resize(
            img, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR)
        if grt is not None:
            grt = cv2.resize(
                grt, (0, 0),
                fx=scale,
                fy=scale,
                interpolation=cv2.INTER_NEAREST)
    else:
        raise Exception("Unexpect data augmention method: {}".format(
            cfg.AUG.AUG_METHOD))

    return img, grt, grt_instance