fcn.py 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import os

import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
from paddle.fluid.initializer import Normal
from paddle.nn import SyncBatchNorm as BatchNorm

from dygraph.cvlibs import manager
from dygraph import utils
C
chenguowei01 已提交
28
from dygraph.cvlibs import param_init
29 30 31 32 33 34 35 36

__all__ = [
    "fcn_hrnet_w18_small_v1", "fcn_hrnet_w18_small_v2", "fcn_hrnet_w18",
    "fcn_hrnet_w30", "fcn_hrnet_w32", "fcn_hrnet_w40", "fcn_hrnet_w44",
    "fcn_hrnet_w48", "fcn_hrnet_w60", "fcn_hrnet_w64"
]


C
chenguowei01 已提交
37
@manager.MODELS.add_component
38 39 40 41 42 43 44
class FCN(fluid.dygraph.Layer):
    """
    Fully Convolutional Networks for Semantic Segmentation.
    https://arxiv.org/abs/1411.4038

    Args:
        num_classes (int): the unique number of target classes.
C
chenguowei01 已提交
45 46 47 48 49 50 51 52 53

        backbone (paddle.nn.Layer): backbone networks.

        model_pretrained (str): the path of pretrained model.

        backbone_indices (tuple): one values in the tuple indicte the indices of output of backbone.Default -1.

        backbone_channels (tuple): the same length with "backbone_indices". It indicates the channels of corresponding index.

C
chenguowei01 已提交
54
        channels (int): channels after conv layer before the last one.
C
chenguowei01 已提交
55

C
chenguowei01 已提交
56
        ignore_index (int): the value of ground-truth mask would be ignored while computing loss or doing evaluation. Default 255.
57 58 59 60
    """

    def __init__(self,
                 num_classes,
C
chenguowei01 已提交
61 62 63 64
                 backbone,
                 model_pretrained=None,
                 backbone_indices=(-1, ),
                 backbone_channels=(270, ),
65 66 67 68 69 70
                 channels=None,
                 ignore_index=255,
                 **kwargs):
        super(FCN, self).__init__()

        self.num_classes = num_classes
C
chenguowei01 已提交
71
        self.backbone_indices = backbone_indices
72 73 74
        self.ignore_index = ignore_index
        self.EPS = 1e-5
        if channels is None:
C
chenguowei01 已提交
75
            channels = backbone_channels[backbone_indices[0]]
76

C
chenguowei01 已提交
77
        self.backbone = backbone
78
        self.conv_last_2 = ConvBNLayer(
C
chenguowei01 已提交
79
            num_channels=backbone_channels[backbone_indices[0]],
80 81
            num_filters=channels,
            filter_size=1,
C
chenguowei01 已提交
82
            stride=1)
83 84 85 86 87
        self.conv_last_1 = Conv2D(
            num_channels=channels,
            num_filters=self.num_classes,
            filter_size=1,
            stride=1,
C
chenguowei01 已提交
88 89
            padding=0)
        self.init_weight(model_pretrained)
90

C
chenguowei01 已提交
91
    def forward(self, x):
92
        input_shape = x.shape[2:]
C
chenguowei01 已提交
93 94
        fea_list = self.backbone(x)
        x = fea_list[self.backbone_indices[0]]
95 96 97
        x = self.conv_last_2(x)
        logit = self.conv_last_1(x)
        logit = fluid.layers.resize_bilinear(logit, input_shape)
C
chenguowei01 已提交
98 99 100 101 102 103 104 105 106 107 108 109
        return [logit]

        # if self.training:
        #     if label is None:
        #         raise Exception('Label is need during training')
        #     return self._get_loss(logit, label)
        # else:
        #     score_map = fluid.layers.softmax(logit, axis=1)
        #     score_map = fluid.layers.transpose(score_map, [0, 2, 3, 1])
        #     pred = fluid.layers.argmax(score_map, axis=3)
        #     pred = fluid.layers.unsqueeze(pred, axes=[3])
        #     return pred, score_map
110 111 112 113 114

    def init_weight(self, pretrained_model=None):
        """
        Initialize the parameters of model parts.
        Args:
C
chenguowei01 已提交
115
            pretrained_model ([str], optional): the path of pretrained model. Defaults to None.
116
        """
C
chenguowei01 已提交
117 118 119 120 121 122 123 124 125 126 127
        params = self.parameters()
        for param in params:
            param_name = param.name
            if 'batch_norm' in param_name:
                if 'w_0' in param_name:
                    param_init.constant_init(param, 1.0)
                elif 'b_0' in param_name:
                    param_init.constant_init(param, 0.0)
            if 'conv' in param_name and 'w_0' in param_name:
                param_init.normal_init(param, scale=0.001)

128 129 130 131 132 133 134
        if pretrained_model is not None:
            if os.path.exists(pretrained_model):
                utils.load_pretrained_model(self, pretrained_model)
            else:
                raise Exception('Pretrained model is not found: {}'.format(
                    pretrained_model))

C
chenguowei01 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    # def _get_loss(self, logit, label):
    #     """
    #     compute forward loss of the model

    #     Args:
    #         logit (tensor): the logit of model output
    #         label (tensor): ground truth

    #     Returns:
    #         avg_loss (tensor): forward loss
    #     """
    #     logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
    #     label = fluid.layers.transpose(label, [0, 2, 3, 1])
    #     mask = label != self.ignore_index
    #     mask = fluid.layers.cast(mask, 'float32')
    #     loss, probs = fluid.layers.softmax_with_cross_entropy(
    #         logit,
    #         label,
    #         ignore_index=self.ignore_index,
    #         return_softmax=True,
    #         axis=-1)

    #     loss = loss * mask
    #     avg_loss = fluid.layers.mean(loss) / (
    #         fluid.layers.mean(mask) + self.EPS)

    #     label.stop_gradient = True
    #     mask.stop_gradient = True
    #     return avg_loss
164 165 166 167 168 169 170 171 172


class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
C
chenguowei01 已提交
173
                 act="relu"):
174 175 176 177 178 179 180 181 182 183
        super(ConvBNLayer, self).__init__()

        self._conv = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            bias_attr=False)
C
chenguowei01 已提交
184
        self._batch_norm = BatchNorm(num_filters)
185 186 187 188 189 190 191 192 193 194 195 196
        self.act = act

    def forward(self, input):
        y = self._conv(input)
        y = self._batch_norm(y)
        if self.act == 'relu':
            y = fluid.layers.relu(y)
        return y


@manager.MODELS.add_component
def fcn_hrnet_w18_small_v1(*args, **kwargs):
C
chenguowei01 已提交
197
    return FCN(backbone='HRNet_W18_Small_V1', backbone_channels=(240), **kwargs)
198 199 200 201


@manager.MODELS.add_component
def fcn_hrnet_w18_small_v2(*args, **kwargs):
C
chenguowei01 已提交
202
    return FCN(backbone='HRNet_W18_Small_V2', backbone_channels=(270), **kwargs)
203 204 205 206


@manager.MODELS.add_component
def fcn_hrnet_w18(*args, **kwargs):
C
chenguowei01 已提交
207
    return FCN(backbone='HRNet_W18', backbone_channels=(270), **kwargs)
208 209 210 211


@manager.MODELS.add_component
def fcn_hrnet_w30(*args, **kwargs):
C
chenguowei01 已提交
212
    return FCN(backbone='HRNet_W30', backbone_channels=(450), **kwargs)
213 214 215 216


@manager.MODELS.add_component
def fcn_hrnet_w32(*args, **kwargs):
C
chenguowei01 已提交
217
    return FCN(backbone='HRNet_W32', backbone_channels=(480), **kwargs)
218 219 220 221


@manager.MODELS.add_component
def fcn_hrnet_w40(*args, **kwargs):
C
chenguowei01 已提交
222
    return FCN(backbone='HRNet_W40', backbone_channels=(600), **kwargs)
223 224 225 226


@manager.MODELS.add_component
def fcn_hrnet_w44(*args, **kwargs):
C
chenguowei01 已提交
227
    return FCN(backbone='HRNet_W44', backbone_channels=(660), **kwargs)
228 229 230 231


@manager.MODELS.add_component
def fcn_hrnet_w48(*args, **kwargs):
C
chenguowei01 已提交
232
    return FCN(backbone='HRNet_W48', backbone_channels=(720), **kwargs)
233 234 235 236


@manager.MODELS.add_component
def fcn_hrnet_w60(*args, **kwargs):
C
chenguowei01 已提交
237
    return FCN(backbone='HRNet_W60', backbone_channels=(900), **kwargs)
238 239 240 241


@manager.MODELS.add_component
def fcn_hrnet_w64(*args, **kwargs):
C
chenguowei01 已提交
242
    return FCN(backbone='HRNet_W64', backbone_channels=(960), **kwargs)