humanseg.cc 4.4 KB
Newer Older
S
sjtubinlong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

# include "humanseg.h"
# include "humanseg_postprocess.h"

// Normalize the image by (pix - mean) * scale
void NormalizeImage(
    const std::vector<float> &mean,
    const std::vector<float> &scale,
    cv::Mat& im, // NOLINT
    float* input_buffer) {
  int height = im.rows;
  int width = im.cols;
  int stride = width * height;
  for (int h = 0; h < height; h++) {
    for (int w = 0; w < width; w++) {
      int base = h * width + w;
      input_buffer[base + 0 * stride] =
          (im.at<cv::Vec3f>(h, w)[0] - mean[0]) * scale[0];
      input_buffer[base + 1 * stride] =
          (im.at<cv::Vec3f>(h, w)[1] - mean[1]) * scale[1];
      input_buffer[base + 2 * stride] =
          (im.at<cv::Vec3f>(h, w)[2] - mean[2]) * scale[2];
    }
  }
}

// Load Model and return model predictor
void LoadModel(
    const std::string& model_dir,
    bool use_gpu,
    std::unique_ptr<paddle::PaddlePredictor>* predictor) {
  // Config the model info
  paddle::AnalysisConfig config;
  config.SetModel(model_dir);
  if (use_gpu) {
      config.EnableUseGpu(100, 0);
  } else {
      config.DisableGpu();
  }
  config.SwitchUseFeedFetchOps(false);
  config.SwitchSpecifyInputNames(true);
  // Memory optimization
  config.EnableMemoryOptim();
  *predictor = std::move(CreatePaddlePredictor(config));
}

void HumanSeg::Preprocess(const cv::Mat& image_mat) {
  // Clone the image : keep the original mat for postprocess
  cv::Mat im = image_mat.clone();
  cv::resize(im, im, cv::Size(192, 192), 0.f, 0.f, cv::INTER_LINEAR);

  im.convertTo(im, CV_32FC3, 1.0);
  int rc = im.channels();
  int rh = im.rows;
  int rw = im.cols;
  input_shape_ = {1, rc, rh, rw};
  input_data_.resize(1 * rc * rh * rw);
  float* buffer = input_data_.data();
  NormalizeImage(mean_, scale_, im, input_data_.data());
}

cv::Mat HumanSeg::Postprocess(const cv::Mat& im) {
  int h = input_shape_[2];
  int w = input_shape_[3];
  scoremap_data_.resize(3 * h * w * sizeof(float));
  float* base = output_data_.data() + h * w;
  for (int i = 0; i < h * w; ++i) {
    scoremap_data_[i] = uchar(base[i] * 255);
  }

  cv::Mat im_scoremap = cv::Mat(h, w, CV_8UC1);
  im_scoremap.data = scoremap_data_.data();
  cv::resize(im_scoremap, im_scoremap, cv::Size(im.cols, im.rows));
  im_scoremap.convertTo(im_scoremap, CV_32FC1, 1 / 255.0);

  float* pblob = reinterpret_cast<float*>(im_scoremap.data);
S
sjtubinlong 已提交
90 91
  int out_buff_capacity = 10 * im.cols * im.rows * sizeof(float);
  segout_data_.resize(out_buff_capacity);
S
sjtubinlong 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
  unsigned char* seg_result = segout_data_.data();
  MergeProcess(im.data, pblob, im.rows, im.cols, seg_result);
  cv::Mat seg_mat(im.rows, im.cols, CV_8UC1, seg_result);
  cv::resize(seg_mat, seg_mat, cv::Size(im.cols, im.rows));
  cv::GaussianBlur(seg_mat, seg_mat, cv::Size(5, 5), 0, 0);
  float fg_threshold = 0.8;
  float bg_threshold = 0.4;
  cv::Mat show_seg_mat;
  seg_mat.convertTo(seg_mat, CV_32FC1, 1 / 255.0);
  ThresholdMask(seg_mat, fg_threshold, bg_threshold, show_seg_mat);
  auto out_im = MergeSegMat(show_seg_mat, im);
  return out_im;
}

cv::Mat HumanSeg::Predict(const cv::Mat& im) {
  // Preprocess image
  Preprocess(im);
  // Prepare input tensor
  auto input_names = predictor_->GetInputNames();
  auto in_tensor = predictor_->GetInputTensor(input_names[0]);
  in_tensor->Reshape(input_shape_);
  in_tensor->copy_from_cpu(input_data_.data());
  // Run predictor
  predictor_->ZeroCopyRun();
  // Get output tensor
  auto output_names = predictor_->GetOutputNames();
  auto out_tensor = predictor_->GetOutputTensor(output_names[0]);
  auto output_shape = out_tensor->shape();
  // Calculate output length
  int output_size = 1;
  for (int j = 0; j < output_shape.size(); ++j) {
      output_size *= output_shape[j];
  }
  output_data_.resize(output_size);
  out_tensor->copy_to_cpu(output_data_.data());
  // Postprocessing result
  return Postprocess(im);
}