resnet.py 10.9 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import numpy as np
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr

__all__ = [
    "ResNet", "ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152"
]

train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "piecewise_decay",
        "batch_size": 256,
        "epochs": [30, 60, 90],
        "steps": [0.1, 0.01, 0.001, 0.0001]
    }
}


class ResNet():
    def __init__(self, layers=50, scale=1.0, stem=None):
        self.params = train_parameters
        self.layers = layers
        self.scale = scale
        self.stem = stem

    def net(self,
            input,
            class_dim=1000,
            end_points=None,
            decode_points=None,
            resize_points=None,
            dilation_dict=None):
        layers = self.layers
        supported_layers = [18, 34, 50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers, layers)

        decode_ends = dict()

        def check_points(count, points):
            if points is None:
                return False
            else:
                if isinstance(points, list):
                    return (True if count in points else False)
                else:
                    return (True if count == points else False)

        def get_dilated_rate(dilation_dict, idx):
            if dilation_dict is None or idx not in dilation_dict:
                return 1
            else:
                return dilation_dict[idx]

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        num_filters = [64, 128, 256, 512]

P
pengmian 已提交
88
        if self.stem == 'icnet' or self.stem == 'pspnet':
W
wuzewu 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
            conv = self.conv_bn_layer(
                input=input,
                num_filters=int(64 * self.scale),
                filter_size=3,
                stride=2,
                act='relu',
                name="conv1_1")
            conv = self.conv_bn_layer(
                input=conv,
                num_filters=int(64 * self.scale),
                filter_size=3,
                stride=1,
                act='relu',
                name="conv1_2")
            conv = self.conv_bn_layer(
                input=conv,
                num_filters=int(128 * self.scale),
                filter_size=3,
                stride=1,
                act='relu',
                name="conv1_3")
        else:
            conv = self.conv_bn_layer(
                input=input,
                num_filters=int(64 * self.scale),
                filter_size=7,
                stride=2,
                act='relu',
                name="conv1")

        conv = fluid.layers.pool2d(
            input=conv,
            pool_size=3,
            pool_stride=2,
            pool_padding=1,
            pool_type='max')

        layer_count = 1
        if check_points(layer_count, decode_points):
            decode_ends[layer_count] = conv

        if check_points(layer_count, end_points):
            return conv, decode_ends

        if layers >= 50:
            for block in range(len(depth)):
                for i in range(depth[block]):
P
pengmian 已提交
136
                    conv_name = "conv" + str(block + 2) + '_' + str(1 + i)
W
wuzewu 已提交
137
                    dilation_rate = get_dilated_rate(dilation_dict, block)
P
pengmian 已提交
138 139 140 141 142 143
                    
                    if self.stem == 'pspnet':
                        stride = 2 if i == 0 and block == 1 else 1
                    else:
                        stride= 2 if i == 0 and block != 0 and dilation_rate == 1 else 1
                    
W
wuzewu 已提交
144
                    conv = self.bottleneck_block(
P
pengmian 已提交
145 146 147 148 149
                            input=conv,
                            num_filters=int(num_filters[block] * self.scale),
                            stride=stride,
                            name=conv_name, 
                            dilation=dilation_rate)
W
wuzewu 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
                    layer_count += 3

                    if check_points(layer_count, decode_points):
                        decode_ends[layer_count] = conv

                    if check_points(layer_count, end_points):
                        return conv, decode_ends

                    if check_points(layer_count, resize_points):
                        conv = self.interp(
                            conv,
                            np.ceil(
                                np.array(conv.shape[2:]).astype('int32') / 2))

            pool = fluid.layers.pool2d(
                input=conv, pool_size=7, pool_type='avg', global_pooling=True)
            stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
            out = fluid.layers.fc(
                input=pool,
                size=class_dim,
                param_attr=fluid.param_attr.ParamAttr(
                    initializer=fluid.initializer.Uniform(-stdv, stdv)))
        else:
            for block in range(len(depth)):
                for i in range(depth[block]):
P
pengmian 已提交
175
                    conv_name = "conv" + str(block + 2) + chr(97 + i)
W
wuzewu 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
                    conv = self.basic_block(
                        input=conv,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        is_first=block == i == 0,
                        name=conv_name)
                    layer_count += 2
                    if check_points(layer_count, decode_points):
                        decode_ends[layer_count] = conv

                    if check_points(layer_count, end_points):
                        return conv, decode_ends

            pool = fluid.layers.pool2d(
                input=conv, pool_size=7, pool_type='avg', global_pooling=True)
            stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
            out = fluid.layers.fc(
                input=pool,
                size=class_dim,
                param_attr=fluid.param_attr.ParamAttr(
                    initializer=fluid.initializer.Uniform(-stdv, stdv)))
        return out

    def zero_padding(self, input, padding):
        return fluid.layers.pad(
            input, [0, 0, 0, 0, padding, padding, padding, padding])

    def interp(self, input, out_shape):
        out_shape = list(out_shape.astype("int32"))
        return fluid.layers.resize_bilinear(input, out_shape=out_shape)

    def conv_bn_layer(self,
                      input,
                      num_filters,
                      filter_size,
                      stride=1,
                      dilation=1,
                      groups=1,
                      act=None,
                      name=None):
P
pengmian 已提交
216 217 218 219 220 221
   
        if self.stem == 'pspnet':
            bias_attr=ParamAttr(name=name + "/biases")
        else:
            bias_attr=False

W
wuzewu 已提交
222 223 224 225 226 227 228 229 230 231
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2 if dilation == 1 else 0,
            dilation=dilation,
            groups=groups,
            act=None,
            param_attr=ParamAttr(name=name + "/weights"),
P
pengmian 已提交
232
            bias_attr=bias_attr,
W
wuzewu 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
            name=name + '.conv2d.output.1')

        bn_name = name + '/BatchNorm/'
        return fluid.layers.batch_norm(
            input=conv,
            act=act,
            name=bn_name + '.output.1',
            param_attr=ParamAttr(name=bn_name + 'gamma'),
            bias_attr=ParamAttr(bn_name + 'beta'),
            moving_mean_name=bn_name + 'moving_mean',
            moving_variance_name=bn_name + 'moving_variance',
        )

    def shortcut(self, input, ch_out, stride, is_first, name):
        ch_in = input.shape[1]
        if ch_in != ch_out or stride != 1 or is_first == True:
            return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
        else:
            return input

    def bottleneck_block(self, input, num_filters, stride, name, dilation=1):
P
pengmian 已提交
254 255 256 257 258
        if self.stem == 'pspnet' and self.layers == 101:
            strides = [1, stride]
        else:
            strides = [stride, 1]
        
W
wuzewu 已提交
259 260 261 262 263
        conv0 = self.conv_bn_layer(
            input=input,
            num_filters=num_filters,
            filter_size=1,
            dilation=1,
P
pengmian 已提交
264
            stride=strides[0],
W
wuzewu 已提交
265 266 267 268 269 270 271 272 273
            act='relu',
            name=name + "_branch2a")
        if dilation > 1:
            conv0 = self.zero_padding(conv0, dilation)
        conv1 = self.conv_bn_layer(
            input=conv0,
            num_filters=num_filters,
            filter_size=3,
            dilation=dilation,
P
pengmian 已提交
274
            stride=strides[1],
W
wuzewu 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
            act='relu',
            name=name + "_branch2b")
        conv2 = self.conv_bn_layer(
            input=conv1,
            num_filters=num_filters * 4,
            dilation=1,
            filter_size=1,
            act=None,
            name=name + "_branch2c")

        short = self.shortcut(
            input,
            num_filters * 4,
            stride,
            is_first=False,
            name=name + "_branch1")

        return fluid.layers.elementwise_add(
            x=short, y=conv2, act='relu', name=name + ".add.output.5")

    def basic_block(self, input, num_filters, stride, is_first, name):
        conv0 = self.conv_bn_layer(
            input=input,
            num_filters=num_filters,
            filter_size=3,
            act='relu',
            stride=stride,
            name=name + "_branch2a")
        conv1 = self.conv_bn_layer(
            input=conv0,
            num_filters=num_filters,
            filter_size=3,
            act=None,
            name=name + "_branch2b")
        short = self.shortcut(
            input, num_filters, stride, is_first, name=name + "_branch1")
        return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')


def ResNet18():
    model = ResNet(layers=18)
    return model


def ResNet34():
    model = ResNet(layers=34)
    return model


def ResNet50():
    model = ResNet(layers=50)
    return model


def ResNet101():
    model = ResNet(layers=101)
    return model


def ResNet152():
    model = ResNet(layers=152)
    return model