mobilenet_v2.py 9.6 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
from utils.config import cfg

__all__ = [
    'MobileNetV2', 'MobileNetV2_x0_25', 'MobileNetV2_x0_5', 'MobileNetV2_x1_0',
    'MobileNetV2_x1_5', 'MobileNetV2_x2_0', 'MobileNetV2_scale'
]

train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "piecewise_decay",
        "batch_size": 256,
        "epochs": [30, 60, 90],
        "steps": [0.1, 0.01, 0.001, 0.0001]
    }
}


class MobileNetV2():
    def __init__(self, scale=1.0, change_depth=False, output_stride=None):
        self.params = train_parameters
        self.scale = scale
        self.change_depth = change_depth
        self.bottleneck_params_list = [
            (1, 16, 1, 1),
            (6, 24, 2, 2),
            (6, 32, 3, 2),
            (6, 64, 4, 2),
            (6, 96, 3, 1),
            (6, 160, 3, 2),
            (6, 320, 1, 1),
        ] if change_depth == False else [
            (1, 16, 1, 1),
            (6, 24, 2, 2),
            (6, 32, 5, 2),
            (6, 64, 7, 2),
            (6, 96, 5, 1),
            (6, 160, 3, 2),
            (6, 320, 1, 1),
        ]
        self.modify_bottle_params(output_stride)

    def modify_bottle_params(self, output_stride=None):
        if output_stride is not None and output_stride % 2 != 0:
            raise Exception("output stride must to be even number")
        if output_stride is None:
            return
        else:
            stride = 2
            for i, layer_setting in enumerate(self.bottleneck_params_list):
                t, c, n, s = layer_setting
                stride = stride * s
                if stride > output_stride:
                    s = 1
                self.bottleneck_params_list[i] = (t, c, n, s)

    def net(self, input, class_dim=1000, end_points=None, decode_points=None):
        scale = self.scale
        change_depth = self.change_depth
        #if change_depth is True, the new depth is 1.4 times as deep as before.
        bottleneck_params_list = self.bottleneck_params_list
        decode_ends = dict()

        def check_points(count, points):
            if points is None:
                return False
            else:
                if isinstance(points, list):
                    return (True if count in points else False)
                else:
                    return (True if count == points else False)

        #conv1
        input = self.conv_bn_layer(
            input,
            num_filters=int(32 * scale),
            filter_size=3,
            stride=2,
            padding=1,
            if_act=True,
            name='conv1_1')
        layer_count = 1

        #print("node test:", layer_count, input.shape)

        if check_points(layer_count, decode_points):
            decode_ends[layer_count] = input

        if check_points(layer_count, end_points):
            return input, decode_ends

        # bottleneck sequences
        i = 1
        in_c = int(32 * scale)
        for layer_setting in bottleneck_params_list:
            t, c, n, s = layer_setting
            i += 1
            input, depthwise_output = self.invresi_blocks(
                input=input,
                in_c=in_c,
                t=t,
                c=int(c * scale),
                n=n,
                s=s,
                name='conv' + str(i))
            in_c = int(c * scale)
            layer_count += n

            #print("node test:", layer_count, input.shape)
            if check_points(layer_count, decode_points):
                decode_ends[layer_count] = depthwise_output

            if check_points(layer_count, end_points):
                return input, decode_ends

        #last_conv
        input = self.conv_bn_layer(
            input=input,
            num_filters=int(1280 * scale) if scale > 1.0 else 1280,
            filter_size=1,
            stride=1,
            padding=0,
            if_act=True,
            name='conv9')

        input = fluid.layers.pool2d(
            input=input,
            pool_size=7,
            pool_stride=1,
            pool_type='avg',
            global_pooling=True)

        output = fluid.layers.fc(
            input=input,
            size=class_dim,
            param_attr=ParamAttr(name='fc10_weights'),
            bias_attr=ParamAttr(name='fc10_offset'))
        return output

    def conv_bn_layer(self,
                      input,
                      filter_size,
                      num_filters,
                      stride,
                      padding,
                      channels=None,
                      num_groups=1,
                      if_act=True,
                      name=None,
                      use_cudnn=True):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            groups=num_groups,
            act=None,
            use_cudnn=use_cudnn,
            param_attr=ParamAttr(name=name + '_weights'),
            bias_attr=False)
        bn_name = name + '_bn'
        bn = fluid.layers.batch_norm(
            input=conv,
            param_attr=ParamAttr(name=bn_name + "_scale"),
            bias_attr=ParamAttr(name=bn_name + "_offset"),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')
        if if_act:
            return fluid.layers.relu6(bn)
        else:
            return bn

    def shortcut(self, input, data_residual):
        return fluid.layers.elementwise_add(input, data_residual)

    def inverted_residual_unit(self,
                               input,
                               num_in_filter,
                               num_filters,
                               ifshortcut,
                               stride,
                               filter_size,
                               padding,
                               expansion_factor,
                               name=None):
        num_expfilter = int(round(num_in_filter * expansion_factor))

        channel_expand = self.conv_bn_layer(
            input=input,
            num_filters=num_expfilter,
            filter_size=1,
            stride=1,
            padding=0,
            num_groups=1,
            if_act=True,
            name=name + '_expand')

        bottleneck_conv = self.conv_bn_layer(
            input=channel_expand,
            num_filters=num_expfilter,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            num_groups=num_expfilter,
            if_act=True,
            name=name + '_dwise',
            use_cudnn=True if cfg.MODEL.FP16 else False)

        depthwise_output = bottleneck_conv

        linear_out = self.conv_bn_layer(
            input=bottleneck_conv,
            num_filters=num_filters,
            filter_size=1,
            stride=1,
            padding=0,
            num_groups=1,
            if_act=False,
            name=name + '_linear')

        if ifshortcut:
            out = self.shortcut(input=input, data_residual=linear_out)
            return out, depthwise_output
        else:
            return linear_out, depthwise_output

    def invresi_blocks(self, input, in_c, t, c, n, s, name=None):
        first_block, depthwise_output = self.inverted_residual_unit(
            input=input,
            num_in_filter=in_c,
            num_filters=c,
            ifshortcut=False,
            stride=s,
            filter_size=3,
            padding=1,
            expansion_factor=t,
            name=name + '_1')

        last_residual_block = first_block
        last_c = c

        for i in range(1, n):
            last_residual_block, depthwise_output = self.inverted_residual_unit(
                input=last_residual_block,
                num_in_filter=last_c,
                num_filters=c,
                ifshortcut=True,
                stride=1,
                filter_size=3,
                padding=1,
                expansion_factor=t,
                name=name + '_' + str(i + 1))
        return last_residual_block, depthwise_output


def MobileNetV2_x0_25():
    model = MobileNetV2(scale=0.25)
    return model


def MobileNetV2_x0_5():
    model = MobileNetV2(scale=0.5)
    return model


def MobileNetV2_x1_0():
    model = MobileNetV2(scale=1.0)
    return model


def MobileNetV2_x1_5():
    model = MobileNetV2(scale=1.5)
    return model


def MobileNetV2_x2_0():
    model = MobileNetV2(scale=2.0)
    return model


def MobileNetV2_scale():
    model = MobileNetV2(scale=1.2, change_depth=True)
    return model


if __name__ == '__main__':
    image_shape = [3, 224, 224]
    image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
    model = MobileNetV2_x1_0()
    logit, decode_ends = model.net(image)
    #print("logit:", logit.shape)