seg_predictor.cpp 12.6 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
#include "seg_predictor.h"

namespace PaddleSolution {

        int Predictor::init(const std::string& conf) {
            if (!_model_config.load_config(conf)) {
                LOG(FATAL) << "Fail to load config file: [" << conf << "]";
                return -1;
            }
            _preprocessor = PaddleSolution::create_processor(conf);
            if (_preprocessor == nullptr) {
                LOG(FATAL) << "Failed to create_processor";
                return -1;
            }

            _mask.resize(_model_config._resize[0] * _model_config._resize[1]);
            _scoremap.resize(_model_config._resize[0] * _model_config._resize[1]);

            bool use_gpu = _model_config._use_gpu;
            const auto& model_dir = _model_config._model_path;
            const auto& model_filename = _model_config._model_file_name;
            const auto& params_filename = _model_config._param_file_name;

            // load paddle model file
            if (_model_config._predictor_mode == "NATIVE") {
                paddle::NativeConfig config;
                auto prog_file = utils::path_join(model_dir, model_filename);
                auto param_file = utils::path_join(model_dir, params_filename);
                config.prog_file = prog_file;
                config.param_file = param_file;
                config.fraction_of_gpu_memory = 0;
                config.use_gpu = use_gpu;
                config.device = 0;
                _main_predictor = paddle::CreatePaddlePredictor(config);
            }
            else if (_model_config._predictor_mode == "ANALYSIS") {
                paddle::AnalysisConfig config;
                if (use_gpu) {
                    config.EnableUseGpu(100, 0);
                }
                auto prog_file = utils::path_join(model_dir, model_filename);
                auto param_file = utils::path_join(model_dir, params_filename);
                config.SetModel(prog_file, param_file);
                config.SwitchUseFeedFetchOps(false);
                _main_predictor = paddle::CreatePaddlePredictor(config);
            }
            else {
                return -1;
            }
            return 0;

        }

        int Predictor::predict(const std::vector<std::string>& imgs) {
            if (_model_config._predictor_mode == "NATIVE") {
                return native_predict(imgs);
            }
            else if (_model_config._predictor_mode == "ANALYSIS") {
                return analysis_predict(imgs);
            }
            return -1;
        }

        int Predictor::output_mask(const std::string& fname, float* p_out, int length, int* height, int* width) {
            int eval_width = _model_config._resize[0];
            int eval_height = _model_config._resize[1];
            int eval_num_class = _model_config._class_num;

            int blob_out_len = length;
            int seg_out_len = eval_height * eval_width * eval_num_class;

            if (blob_out_len != seg_out_len) {
                LOG(ERROR) << " [FATAL] unequal: input vs output [" <<
                    seg_out_len << "|" << blob_out_len << "]" << std::endl;
                return -1;
            }

            //post process
            _mask.clear();
            _scoremap.clear();
            int out_img_len = eval_height * eval_width;
            for (int i = 0; i < out_img_len; ++i) {
                float max_value = -1;
                int label = 0;
                for (int j = 0; j < eval_num_class; ++j) {
                    int index = i + j * out_img_len;
                    if (index >= blob_out_len) {
                        break;
                    }
                    float value = p_out[index];
                    if (value > max_value) {
                        max_value = value;
                        label = j;
                    }
                }
                if (label == 0) max_value = 0;
                _mask[i] = uchar(label);
                _scoremap[i] = uchar(max_value * 255);
            }

            cv::Mat mask_png = cv::Mat(eval_height, eval_width, CV_8UC1);
            mask_png.data = _mask.data();
            std::string nname(fname);
            auto pos = fname.find(".");
            nname[pos] = '_';
            std::string mask_save_name = nname + ".png";
            cv::imwrite(mask_save_name, mask_png);
            cv::Mat scoremap_png = cv::Mat(eval_height, eval_width, CV_8UC1);
            scoremap_png.data = _scoremap.data();
            std::string scoremap_save_name = nname + std::string("_scoremap.png");
            cv::imwrite(scoremap_save_name, scoremap_png);
            std::cout << "save mask of [" << fname << "] done" << std::endl;

            if (height && width) {
                int recover_height = *height;
                int recover_width = *width;
                cv::Mat recover_png = cv::Mat(recover_height, recover_width, CV_8UC1);
                cv::resize(scoremap_png, recover_png, cv::Size(recover_width, recover_height),
                    0, 0, cv::INTER_CUBIC);
                std::string recover_name = nname + std::string("_recover.png");
                cv::imwrite(recover_name, recover_png);
            }
            return 0;
        }

        int Predictor::native_predict(const std::vector<std::string>& imgs)
        {
            int config_batch_size = _model_config._batch_size;

            int channels = _model_config._channels;
            int eval_width = _model_config._resize[0];
            int eval_height = _model_config._resize[1];
            std::size_t total_size = imgs.size();
            int default_batch_size = std::min(config_batch_size, (int)total_size);
            int batch = total_size / default_batch_size + ((total_size % default_batch_size) != 0);
            int batch_buffer_size = default_batch_size * channels * eval_width * eval_height;

            auto& input_buffer = _buffer;
            auto& org_width = _org_width;
            auto& org_height = _org_height;
            auto& imgs_batch = _imgs_batch;

            input_buffer.resize(batch_buffer_size);
            org_width.resize(default_batch_size);
            org_height.resize(default_batch_size);
            for (int u = 0; u < batch; ++u) {
                int batch_size = default_batch_size;
                if (u == (batch - 1) && (total_size % default_batch_size)) {
                    batch_size = total_size % default_batch_size;
                }

                int real_buffer_size = batch_size * channels * eval_width * eval_height;
                std::vector<paddle::PaddleTensor> feeds;
                input_buffer.resize(real_buffer_size);
                org_height.resize(batch_size);
                org_width.resize(batch_size);
                for (int i = 0; i < batch_size; ++i) {
                    org_width[i] = org_height[i] = 0;
                }
                imgs_batch.clear();
                for (int i = 0; i < batch_size; ++i) {
                    int idx = u * default_batch_size + i;
                    imgs_batch.push_back(imgs[idx]);
                }
                if (!_preprocessor->batch_process(imgs_batch, input_buffer.data(), org_width.data(), org_height.data())) {
                    return -1;
                }
                paddle::PaddleTensor im_tensor;
                im_tensor.name = "image";
                im_tensor.shape = std::vector<int>({ batch_size, channels, eval_height, eval_width });
                im_tensor.data.Reset(input_buffer.data(), real_buffer_size * sizeof(float));
                im_tensor.dtype = paddle::PaddleDType::FLOAT32;
                feeds.push_back(im_tensor);
                _outputs.clear();
                auto t1 = std::chrono::high_resolution_clock::now();
                if (!_main_predictor->Run(feeds, &_outputs, batch_size)) {
                    LOG(ERROR) << "Failed: NativePredictor->Run() return false at batch: " << u;
                    continue;
                }
                auto t2 = std::chrono::high_resolution_clock::now();
                auto duration = std::chrono::duration_cast<std::chrono::microseconds>(t2 - t1).count();
                std::cout << "runtime = " << duration << std::endl;
                int out_num = 1;
                // print shape of first output tensor for debugging
                std::cout << "size of outputs[" << 0 << "]: (";
                for (int j = 0; j < _outputs[0].shape.size(); ++j) {
                    out_num *= _outputs[0].shape[j];
                    std::cout << _outputs[0].shape[j] << ",";
                }
                std::cout << ")" << std::endl;
                const size_t nums = _outputs.front().data.length() / sizeof(float);
                if (out_num % batch_size != 0 || out_num != nums) {
                    LOG(ERROR) << "outputs data size mismatch with shape size.";
                    return -1;
                }

                for (int i = 0; i < batch_size; ++i) {
                    float* output_addr = (float*)(_outputs[0].data.data()) + i * (out_num / batch_size);
                    output_mask(imgs_batch[i], output_addr, out_num / batch_size, &org_height[i], &org_width[i]);
                }
            }

            return 0;
        }

        int Predictor::analysis_predict(const std::vector<std::string>& imgs) {

            int config_batch_size = _model_config._batch_size;
            int channels = _model_config._channels;
            int eval_width = _model_config._resize[0];
            int eval_height = _model_config._resize[1];
            auto total_size = imgs.size();
            int default_batch_size = std::min(config_batch_size, (int)total_size);
            int batch = total_size / default_batch_size + ((total_size % default_batch_size) != 0);
            int batch_buffer_size = default_batch_size * channels * eval_width * eval_height;

            auto& input_buffer = _buffer;
            auto& org_width = _org_width;
            auto& org_height = _org_height;
            auto& imgs_batch = _imgs_batch;

            input_buffer.resize(batch_buffer_size);
            org_width.resize(default_batch_size);
            org_height.resize(default_batch_size);

            for (int u = 0; u < batch; ++u) {
                int batch_size = default_batch_size;
                if (u == (batch - 1) && (total_size % default_batch_size)) {
                    batch_size = total_size % default_batch_size;
                }

                int real_buffer_size = batch_size * channels * eval_width * eval_height;
                std::vector<paddle::PaddleTensor> feeds;
                input_buffer.resize(real_buffer_size);
                org_height.resize(batch_size);
                org_width.resize(batch_size);
                for (int i = 0; i < batch_size; ++i) {
                    org_width[i] = org_height[i] = 0;
                }
                imgs_batch.clear();
                for (int i = 0; i < batch_size; ++i) {
                    int idx = u * default_batch_size + i;
                    imgs_batch.push_back(imgs[idx]);
                }
                if (!_preprocessor->batch_process(imgs_batch, input_buffer.data(), org_height.data(), org_width.data())) {
                    return -1;
                }
                auto im_tensor = _main_predictor->GetInputTensor("image");
                im_tensor->Reshape({ batch_size, channels, eval_height, eval_width });
                im_tensor->copy_from_cpu(input_buffer.data());

                auto t1 = std::chrono::high_resolution_clock::now();
                _main_predictor->ZeroCopyRun();
                auto t2 = std::chrono::high_resolution_clock::now();
                auto duration = std::chrono::duration_cast<std::chrono::microseconds>(t2 - t1).count();
                std::cout << "runtime = " << duration << std::endl;

                auto output_names = _main_predictor->GetOutputNames();
                auto output_t = _main_predictor->GetOutputTensor(output_names[0]);
                std::vector<float> out_data;
                std::vector<int> output_shape = output_t->shape();

                int out_num = 1;
                std::cout << "size of outputs[" << 0 << "]: (";
                for (int j = 0; j < output_shape.size(); ++j) {
                    out_num *= output_shape[j];
                    std::cout << output_shape[j] << ",";
                }
                std::cout << ")" << std::endl;

                out_data.resize(out_num);
                output_t->copy_to_cpu(out_data.data());
                for (int i = 0; i < batch_size; ++i) {
                    float* out_addr = out_data.data() + (out_num / batch_size) * i;
                    output_mask(imgs_batch[i], out_addr, out_num / batch_size, &org_height[i], &org_width[i]);
                }
            }
            return 0;
        }
}