infer.py 12.7 KB
Newer Older
1
# coding: utf8
W
wuyefeilin 已提交
2
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import ast
import time

import gflags
import yaml
import cv2

import numpy as np
import paddle.fluid as fluid

from concurrent.futures import ThreadPoolExecutor, as_completed

gflags.DEFINE_string("conf", default="", help="Configuration File Path")
gflags.DEFINE_string("input_dir", default="", help="Directory of Input Images")
gflags.DEFINE_string("trt_mode", default="", help="Use optimized model")
W
wuyefeilin 已提交
33 34
gflags.DEFINE_string(
    "ext", default=".jpeg|.jpg", help="Input Image File Extensions")
35 36
gflags.FLAGS = gflags.FLAGS

W
wuyefeilin 已提交
37

S
sjtubinlong 已提交
38 39 40 41 42 43 44 45 46 47 48 49
# Generate ColorMap for visualization
def generate_colormap(num_classes):
    color_map = num_classes * [0, 0, 0]
    for i in range(0, num_classes):
        j = 0
        lab = i
        while lab:
            color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
            color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
            color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
            j += 1
            lab >>= 3
W
wuyefeilin 已提交
50
    color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
S
sjtubinlong 已提交
51
    return color_map
52

W
wuyefeilin 已提交
53

54 55 56 57 58 59 60
# Paddle-TRT Precision Map
trt_precision_map = {
    "int8": fluid.core.AnalysisConfig.Precision.Int8,
    "fp32": fluid.core.AnalysisConfig.Precision.Float32,
    "fp16": fluid.core.AnalysisConfig.Precision.Half
}

W
wuyefeilin 已提交
61

62 63 64 65 66 67 68 69 70 71 72 73
# scan a directory and get all images with support extensions
def get_images_from_dir(img_dir, support_ext=".jpg|.jpeg"):
    if (not os.path.exists(img_dir) or not os.path.isdir(img_dir)):
        raise Exception("Image Directory [%s] invalid" % img_dir)
    imgs = []
    for item in os.listdir(img_dir):
        ext = os.path.splitext(item)[1][1:].strip().lower()
        if (len(ext) > 0 and ext in support_ext):
            item_path = os.path.join(img_dir, item)
            imgs.append(item_path)
    return imgs

W
wuyefeilin 已提交
74

75 76 77 78 79 80 81 82 83 84
# Deploy Configuration File Parser
class DeployConfig:
    def __init__(self, conf_file):
        if not os.path.exists(conf_file):
            raise Exception('Config file path [%s] invalid!' % conf_file)

        with open(conf_file) as fp:
            configs = yaml.load(fp, Loader=yaml.FullLoader)
            deploy_conf = configs["DEPLOY"]
            # 1. get eval_crop_size
W
wuyefeilin 已提交
85 86
            self.eval_crop_size = ast.literal_eval(
                deploy_conf["EVAL_CROP_SIZE"])
87 88 89 90 91 92 93
            # 2. get mean
            self.mean = deploy_conf["MEAN"]
            # 3. get std
            self.std = deploy_conf["STD"]
            # 4. get class_num
            self.class_num = deploy_conf["NUM_CLASSES"]
            # 5. get paddle model and params file path
W
wuyefeilin 已提交
94 95 96 97
            self.model_file = os.path.join(deploy_conf["MODEL_PATH"],
                                           deploy_conf["MODEL_FILENAME"])
            self.param_file = os.path.join(deploy_conf["MODEL_PATH"],
                                           deploy_conf["PARAMS_FILENAME"])
98 99 100 101 102 103 104 105
            # 6. use_gpu
            self.use_gpu = deploy_conf["USE_GPU"]
            # 7. predictor_mode
            self.predictor_mode = deploy_conf["PREDICTOR_MODE"]
            # 8. batch_size
            self.batch_size = deploy_conf["BATCH_SIZE"]
            # 9. channels
            self.channels = deploy_conf["CHANNELS"]
106 107 108
            # 10. use_pr
            self.use_pr = deploy_conf["USE_PR"]

109

W
wuyefeilin 已提交
110

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
class ImageReader:
    def __init__(self, configs):
        self.config = configs
        self.threads_pool = ThreadPoolExecutor(configs.batch_size)

    # image processing thread worker
    def process_worker(self, imgs, idx, use_pr=False):
        image_path = imgs[idx]
        im = cv2.imread(image_path, -1)
        channels = im.shape[2]
        ori_h = im.shape[0]
        ori_w = im.shape[1]
        if channels == 1:
            im = cv2.cvtColor(im, cv2.COLOR_GRAY2BGR)
            channels = im.shape[2]
        if channels != 3 and channels != 4:
            print("Only support rgb(gray) or rgba image.")
            return -1

        # resize to eval_crop_size
        eval_crop_size = self.config.eval_crop_size
        if (ori_h != eval_crop_size[0] or ori_w != eval_crop_size[1]):
            im = cv2.resize(
                im, eval_crop_size, fx=0, fy=0, interpolation=cv2.INTER_LINEAR)

        # if use models with no pre-processing/post-processing op optimizations
        if not use_pr:
            im_mean = np.array(self.config.mean).reshape((3, 1, 1))
            im_std = np.array(self.config.std).reshape((3, 1, 1))
            # HWC -> CHW, don't use transpose((2, 0, 1))
            im = im.swapaxes(1, 2)
            im = im.swapaxes(0, 1)
            im = im[:, :, :].astype('float32') / 255.0
            im -= im_mean
            im /= im_std
W
wuyefeilin 已提交
146
        im = im[np.newaxis, :, :, :]
147 148 149 150 151 152
        info = [image_path, im, (ori_w, ori_h)]
        return info

    # process multiple images with multithreading
    def process(self, imgs, use_pr=False):
        imgs_data = []
153
        with ThreadPoolExecutor(max_workers=self.config.batch_size) as exe_pool:
W
wuyefeilin 已提交
154
            tasks = [
155
                exe_pool.submit(self.process_worker, imgs, idx, use_pr)
W
wuyefeilin 已提交
156 157
                for idx in range(len(imgs))
            ]
158 159 160 161
        for task in as_completed(tasks):
            imgs_data.append(task.result())
        return imgs_data

W
wuyefeilin 已提交
162

163 164 165 166 167 168 169 170
class Predictor:
    def __init__(self, conf_file):
        self.config = DeployConfig(conf_file)
        self.image_reader = ImageReader(self.config)
        if self.config.predictor_mode == "NATIVE":
            predictor_config = fluid.core.NativeConfig()
            predictor_config.prog_file = self.config.model_file
            predictor_config.param_file = self.config.param_file
B
Bin Long 已提交
171
            predictor_config.use_gpu = self.config.use_gpu
172 173 174 175 176 177 178 179 180 181 182 183
            predictor_config.device = 0
            predictor_config.fraction_of_gpu_memory = 0
        elif self.config.predictor_mode == "ANALYSIS":
            predictor_config = fluid.core.AnalysisConfig(
                self.config.model_file, self.config.param_file)
            if self.config.use_gpu:
                predictor_config.enable_use_gpu(100, 0)
                predictor_config.switch_ir_optim(True)
                if gflags.FLAGS.trt_mode != "":
                    precision_type = trt_precision_map[gflags.FLAGS.trt_mode]
                    use_calib = (gflags.FLAGS.trt_mode == "int8")
                    predictor_config.enable_tensorrt_engine(
W
wuyefeilin 已提交
184
                        workspace_size=1 << 30,
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
                        max_batch_size=self.config.batch_size,
                        min_subgraph_size=40,
                        precision_mode=precision_type,
                        use_static=False,
                        use_calib_mode=use_calib)
            else:
                predictor_config.disable_gpu()
            predictor_config.switch_specify_input_names(True)
            predictor_config.enable_memory_optim()
        self.predictor = fluid.core.create_paddle_predictor(predictor_config)

    def create_tensor(self, inputs, batch_size, use_pr=False):
        im_tensor = fluid.core.PaddleTensor()
        im_tensor.name = "image"
        if not use_pr:
W
wuyefeilin 已提交
200 201 202 203
            im_tensor.shape = [
                batch_size, self.config.channels, self.config.eval_crop_size[1],
                self.config.eval_crop_size[0]
            ]
204
        else:
W
wuyefeilin 已提交
205 206 207 208
            im_tensor.shape = [
                batch_size, self.config.eval_crop_size[1],
                self.config.eval_crop_size[0], self.config.channels
            ]
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
        im_tensor.dtype = fluid.core.PaddleDType.FLOAT32
        im_tensor.data = fluid.core.PaddleBuf(inputs.ravel().astype("float32"))
        return [im_tensor]

    # save prediction results and visualization them
    def output_result(self, imgs_data, infer_out, use_pr=False):
        for idx in range(len(imgs_data)):
            img_name = imgs_data[idx][0]
            ori_shape = imgs_data[idx][2]
            mask = infer_out[idx]
            if not use_pr:
                mask = np.argmax(mask, axis=0)
            mask = mask.astype('uint8')
            mask_png = mask
            score_png = mask_png[:, :, np.newaxis]
            score_png = np.concatenate([score_png] * 3, axis=2)
            # visualization score png
S
sjtubinlong 已提交
226
            color_map = generate_colormap(self.config.class_num)
227 228 229 230 231 232 233 234 235 236 237 238 239 240
            for i in range(score_png.shape[0]):
                for j in range(score_png.shape[1]):
                    score_png[i, j] = color_map[score_png[i, j, 0]]
            # save the mask
            # mask of xxx.jpeg will be saved as xxx_jpeg_mask.png
            ext_pos = img_name.rfind(".")
            img_name_fix = img_name[:ext_pos] + "_" + img_name[ext_pos + 1:]
            mask_save_name = img_name_fix + "_mask.png"
            cv2.imwrite(mask_save_name, mask_png, [cv2.CV_8UC1])
            # save the visualized result
            # result of xxx.jpeg will be saved as xxx_jpeg_result.png
            vis_result_name = img_name_fix + "_result.png"
            result_png = score_png
            # if not use_pr:
W
wuyefeilin 已提交
241 242 243 244 245 246
            result_png = cv2.resize(
                result_png,
                ori_shape,
                fx=0,
                fy=0,
                interpolation=cv2.INTER_CUBIC)
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
            cv2.imwrite(vis_result_name, result_png, [cv2.CV_8UC1])
            print("save result of [" + img_name + "] done.")

    def predict(self, images):
        # image reader preprocessing time cost
        reader_time = 0
        # inference time cost
        infer_time = 0
        # post_processing: generate mask and visualize it
        post_time = 0
        # total time cost: preprocessing + inference + postprocessing
        total_runtime = 0

        # record starting time point
        total_start = time.time()
        batch_size = self.config.batch_size
263
        use_pr = self.config.use_pr
264 265 266 267 268
        for i in range(0, len(images), batch_size):
            real_batch_size = batch_size
            if i + batch_size >= len(images):
                real_batch_size = len(images) - i
            reader_start = time.time()
W
wuyefeilin 已提交
269
            img_datas = self.image_reader.process(images[i:i + real_batch_size],
270
                                                  use_pr)
271 272
            input_data = np.concatenate([item[1] for item in img_datas])
            input_data = self.create_tensor(
273
                input_data, real_batch_size, use_pr=use_pr)
274 275 276 277 278 279
            reader_end = time.time()
            infer_start = time.time()
            output_data = self.predictor.run(input_data)[0]
            infer_end = time.time()
            output_data = output_data.as_ndarray()
            post_start = time.time()
280
            self.output_result(img_datas, output_data, use_pr)
281
            post_end = time.time()
S
sjtubinlong 已提交
282 283
            reader_time += (reader_end - reader_start)
            infer_time += (infer_end - infer_start)
284 285 286 287 288 289
            post_time += (post_end - post_start)

        # finishing process all images
        total_end = time.time()
        # compute whole processing time
        total_runtime = (total_end - total_start)
W
wuyefeilin 已提交
290 291 292 293
        print(
            "images_num=[%d],preprocessing_time=[%f],infer_time=[%f],postprocessing_time=[%f],total_runtime=[%f]"
            % (len(images), reader_time, infer_time, post_time, total_runtime))

294 295 296 297 298

def run(deploy_conf, imgs_dir, support_extensions=".jpg|.jpeg"):
    # 1. scan and get all images with valid extensions in directory imgs_dir
    imgs = get_images_from_dir(imgs_dir)
    if len(imgs) == 0:
W
wuyefeilin 已提交
299 300
        print("No Image (with extensions : %s) found in [%s]" %
              (support_extensions, imgs_dir))
301 302 303 304 305 306 307
        return -1
    # 2. create a predictor
    seg_predictor = Predictor(deploy_conf)
    # 3. do a inference on images
    seg_predictor.predict(imgs)
    return 0

W
wuyefeilin 已提交
308

309 310 311 312
if __name__ == "__main__":
    # 0. parse the arguments
    gflags.FLAGS(sys.argv)
    if (gflags.FLAGS.conf == "" or gflags.FLAGS.input_dir == ""):
W
wuyefeilin 已提交
313 314
        print("Usage: python infer.py --conf=/config/path/to/your/model " +
              "--input_dir=/directory/of/your/input/images [--use_pr=True]")
315 316 317 318
        exit(-1)
    # set empty to turn off as default
    trt_mode = gflags.FLAGS.trt_mode
    if (trt_mode != "" and trt_mode not in trt_precision_map):
W
wuyefeilin 已提交
319 320
        print(
            "Invalid trt_mode [%s], only support[int8, fp16, fp32]" % trt_mode)
321 322
        exit(-1)
    # run inference
B
Bin Long 已提交
323
    run(gflags.FLAGS.conf, gflags.FLAGS.input_dir, gflags.FLAGS.ext)