reader_op.cpp 6.2 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <algorithm>

#include "predictor/framework/memory.h"
#include "seg-serving/op/reader_op.h"
#include "seg-serving/op/seg_conf.h"
namespace baidu {
namespace paddle_serving {
namespace serving {

using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::image_segmentation::Request;
using baidu::paddle_serving::image_segmentation::ImageSegReqItem;
using baidu::utils::seg_conf::SegConf;
int ReaderOp::inference() {
  const Request* req = dynamic_cast<const Request*>(get_request_message());
//  LOG(INFO) << "Receive request in dense service:" << req->ShortDebugString();

  ReaderOutput* res = mutable_data<ReaderOutput>();
  if (!res) {
    LOG(ERROR) << "Failed get op tls reader object output";
    return -1;
  }

  TensorVector* in = &res->tensors;
  uint32_t batch_size = req->instances_size();
  if (batch_size <= 0) {
    LOG(WARNING) << "No instances need to inference!";
    return -1;
  }

  static const SegConf *sc_ptr = SegConf::instance();
  std::vector<double> pmean;
  if(sc_ptr->get_mean_vector(pmean) != 0) {
   LOG(ERROR) << "Can't load the mean items";
   return -1; 
  }

  std::vector<double> scale;
  if(sc_ptr->get_std_vector(scale) != 0) {
    LOG(ERROR) << "Can't load the scale items";
    return -1;
  }

  std::vector<int> iresize;
  if(sc_ptr->get_size_vector(iresize) != 0) {
    LOG(ERROR) << "Can't load size vector";
    return -1;
  }

  int channels;
  if(sc_ptr->get_channels(channels) != 0) {
    LOG(ERROR) << "Can't load channels";
    return -1;
  }

  //bool enable_crop = SegConf._enable_crop;

  cv::Size resize;
  resize.height = iresize[1];
  resize.width = iresize[0];

  paddle::PaddleTensor in_tensor;
  in_tensor.name = "image";
  in_tensor.dtype = paddle::FLOAT32;
  // shape assignment
  in_tensor.shape.push_back(batch_size);  // batch_size
  in_tensor.shape.push_back(channels);
  in_tensor.shape.push_back(resize.height);
  in_tensor.shape.push_back(resize.width);

  // tls resource assignment
  size_t dense_capacity = channels * resize.width * resize.height;
  size_t len = dense_capacity * sizeof(float) * batch_size;

  // Allocate buffer in PaddleTensor, so that buffer will be managed by the
  // Tensor
  in_tensor.data.Resize(len);
  float* data = reinterpret_cast<float*>(in_tensor.data.data());
  if (in_tensor.data.data() == NULL) {
    LOG(ERROR) << "Failed create temp float array, "
               << "size=" << dense_capacity * batch_size * sizeof(float);
    return -1;
  }
  std::vector<int> *in_width_vec = &res->width_vec;
  std::vector<int> *in_height_vec = &res->height_vec;

  for (uint32_t si = 0; si < batch_size; si++) {
    // parse image object from x-image
    const ImageSegReqItem& ins = req->instances(si);
    // read dense image from request bytes
    const char* binary = ins.image_binary().c_str();
    size_t length = ins.image_length();
    if (length == 0) {
      LOG(ERROR) << "Empty image, length is 0";
      return -1;
    }

    _image_vec_tmp.clear();
    _image_vec_tmp.assign(binary, binary + length);
    _image_8u_tmp = cv::imdecode(cv::Mat(_image_vec_tmp),
                CV_LOAD_IMAGE_UNCHANGED);
    if (_image_8u_tmp.data == NULL) {
      LOG(ERROR) << "Image decode failed!";
      return -1;
    }

    // accumulate length
    const int HH = _image_8u_tmp.rows;
    const int WW = _image_8u_tmp.cols;
    const int CC = _image_8u_tmp.channels();
   //HH: cols WW:rows 
    in_width_vec->push_back(HH);
    in_height_vec->push_back(WW);

    // resize/crop
    if (_image_8u_tmp.cols != resize.width ||
        _image_8u_tmp.rows != resize.height) {
//      int short_egde = std::min<int>(_image_8u_tmp.cols, _image_8u_tmp.rows);
//      int yy = static_cast<int>((_image_8u_tmp.rows - short_egde) / 2);
//      int xx = static_cast<int>((_image_8u_tmp.cols - short_egde) / 2);
//      _image_8u_tmp =
//          cv::Mat(_image_8u_tmp, cv::Rect(xx, yy, short_egde, short_egde));
//      if (_image_8u_tmp.cols != resize.width ||
//          _image_8u_tmp.rows != resize.height) {
          cv::Mat resize_image;
//        cv::resize(_image_8u_tmp, resize_image, resize);
//        _image_8u_tmp = resize_image;
//      }
//
      cv::resize(_image_8u_tmp, resize_image, resize);
      _image_8u_tmp = resize_image;
      LOG(INFO) << "Succ crop one image[CHW=" << _image_8u_tmp.channels()
                << ", " << _image_8u_tmp.cols << ", " << _image_8u_tmp.rows
                << "]"
                << " from image[CHW=" << CC << ", " << HH << ", " << WW << "]";
    }

    // BGR->RGB transformer
    //cv::cvtColor(_image_8u_tmp, _image_8u_rgb, cv::COLOR_GRAY2BGR);
    _image_8u_rgb = _image_8u_tmp;
    
    const int H = _image_8u_rgb.rows;
    const int W = _image_8u_rgb.cols;
    const int C = _image_8u_rgb.channels();
    if (H != resize.height || W != resize.width || C != channels) {
      LOG(ERROR) << "Image " << si << " has incompitable size (" << H << ", " << W << "," << C << ")";
      return -1;
    }

    LOG(INFO) << "Succ read one image, C: " << C << ", W: " << W
              << ", H: " << H;

    float* data_ptr = data + dense_capacity * si;
    for (int h = 0; h < H; h++) {
      // p points to a new line
      unsigned char* p = _image_8u_rgb.ptr<unsigned char>(h);
      for (int w = 0; w < W; w++) {
        for (int c = 0; c < C; c++) {
          // HWC(row,column,channel) -> CWH
          data_ptr[W * H * c + W * h + w] =
              (p[C * w + c] - pmean[c]) / scale[c];
         //HWC->CHW
         //data_ptr[W * H * c + w * H + h] = 
         //     (p[C * w + c] - pmean[c]) / scale[c];
         
        }
      }
    }
  }
  in->push_back(in_tensor);

  return 0;
}

DEFINE_OP(ReaderOp);

}  // namespace serving
}  // namespace paddle_serving
}  // namespace baidu