train.py 13.6 KB
Newer Older
L
LielinJiang 已提交
1
# coding: utf8
W
wuyefeilin 已提交
2
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
L
LielinJiang 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
# GPU memory garbage collection optimization flags
os.environ['FLAGS_eager_delete_tensor_gb'] = "0.0"

import sys

cur_path = os.path.abspath(os.path.dirname(__file__))
root_path = os.path.split(os.path.split(cur_path)[0])[0]
L
LielinJiang 已提交
28 29
SEG_PATH = os.path.join(cur_path, "../../../")
sys.path.append(SEG_PATH)
L
LielinJiang 已提交
30 31 32 33 34 35 36 37 38
sys.path.append(root_path)

import argparse
import pprint

import numpy as np
import paddle.fluid as fluid

from utils.config import cfg
L
LielinJiang 已提交
39
from pdseg.utils.timer import Timer, calculate_eta
L
LielinJiang 已提交
40 41 42 43 44 45
from reader import LaneNetDataset
from models.model_builder import build_model
from models.model_builder import ModelPhase
from eval import evaluate
from vis import visualize
from utils import dist_utils
W
wuyefeilin 已提交
46
from utils.load_model_utils import load_pretrained_weights
L
LielinJiang 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80


def parse_args():
    parser = argparse.ArgumentParser(description='PaddleSeg training')
    parser.add_argument(
        '--cfg',
        dest='cfg_file',
        help='Config file for training (and optionally testing)',
        default=None,
        type=str)
    parser.add_argument(
        '--use_gpu',
        dest='use_gpu',
        help='Use gpu or cpu',
        action='store_true',
        default=False)
    parser.add_argument(
        '--use_mpio',
        dest='use_mpio',
        help='Use multiprocess I/O or not',
        action='store_true',
        default=False)
    parser.add_argument(
        '--log_steps',
        dest='log_steps',
        help='Display logging information at every log_steps',
        default=10,
        type=int)
    parser.add_argument(
        '--debug',
        dest='debug',
        help='debug mode, display detail information of training',
        action='store_true')
    parser.add_argument(
81 82 83
        '--use_vdl',
        dest='use_vdl',
        help='whether to record the data during training to VisualDL',
L
LielinJiang 已提交
84 85
        action='store_true')
    parser.add_argument(
86 87 88
        '--vdl_log_dir',
        dest='vdl_log_dir',
        help='VisualDL logging directory',
L
LielinJiang 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        default=None,
        type=str)
    parser.add_argument(
        '--do_eval',
        dest='do_eval',
        help='Evaluation models result on every new checkpoint',
        action='store_true')
    parser.add_argument(
        'opts',
        help='See utils/config.py for all options',
        default=None,
        nargs=argparse.REMAINDER)
    return parser.parse_args()


def save_checkpoint(exe, program, ckpt_name):
    """
    Save checkpoint for evaluation or resume training
    """
    ckpt_dir = os.path.join(cfg.TRAIN.MODEL_SAVE_DIR, str(ckpt_name))
    print("Save model checkpoint to {}".format(ckpt_dir))
    if not os.path.isdir(ckpt_dir):
        os.makedirs(ckpt_dir)

W
wuyefeilin 已提交
113
    fluid.save(program, os.path.join(ckpt_dir, 'model'))
L
LielinJiang 已提交
114 115 116 117 118 119

    return ckpt_dir


def load_checkpoint(exe, program):
    """
W
wuyefeilin 已提交
120
    Load checkpoiont for resuming training
L
LielinJiang 已提交
121 122
    """
    model_path = cfg.TRAIN.RESUME_MODEL_DIR
W
wuyefeilin 已提交
123 124 125 126 127 128
    print('Resume model training from:', model_path)
    if not os.path.exists(model_path):
        raise ValueError(
            "TRAIN.PRETRAIN_MODEL {} not exist!".format(model_path))
    fluid.load(program, os.path.join(model_path, 'model'), exe)

L
LielinJiang 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    # Check is path ended by path spearator
    if model_path[-1] == os.sep:
        model_path = model_path[0:-1]
    epoch_name = os.path.basename(model_path)
    # If resume model is final model
    if epoch_name == 'final':
        begin_epoch = cfg.SOLVER.NUM_EPOCHS
    # If resume model path is end of digit, restore epoch status
    elif epoch_name.isdigit():
        epoch = int(epoch_name)
        begin_epoch = epoch + 1
    else:
        raise ValueError("Resume model path is not valid!")
    print("Model checkpoint loaded successfully!")
    return begin_epoch


def print_info(*msg):
    if cfg.TRAINER_ID == 0:
        print(*msg)


def train(cfg):
    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    drop_last = True

    dataset = LaneNetDataset(
        file_list=cfg.DATASET.TRAIN_FILE_LIST,
        mode=ModelPhase.TRAIN,
        shuffle=True,
        data_dir=cfg.DATASET.DATA_DIR)

    def data_generator():
        if args.use_mpio:
            data_gen = dataset.multiprocess_generator(
                num_processes=cfg.DATALOADER.NUM_WORKERS,
                max_queue_size=cfg.DATALOADER.BUF_SIZE)
        else:
            data_gen = dataset.generator()

        batch_data = []
        for b in data_gen:
            batch_data.append(b)
            if len(batch_data) == (cfg.BATCH_SIZE // cfg.NUM_TRAINERS):
                for item in batch_data:
                    yield item
                batch_data = []

    # Get device environment
    gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0))
    place = fluid.CUDAPlace(gpu_id) if args.use_gpu else fluid.CPUPlace()
    places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places()

    # Get number of GPU
    dev_count = cfg.NUM_TRAINERS if cfg.NUM_TRAINERS > 1 else len(places)
    print_info("#Device count: {}".format(dev_count))

    # Make sure BATCH_SIZE can divided by GPU cards
    assert cfg.BATCH_SIZE % dev_count == 0, (
        'BATCH_SIZE:{} not divisble by number of GPUs:{}'.format(
            cfg.BATCH_SIZE, dev_count))
    # If use multi-gpu training mode, batch data will allocated to each GPU evenly
    batch_size_per_dev = cfg.BATCH_SIZE // dev_count
    cfg.BATCH_SIZE_PER_DEV = batch_size_per_dev
    print_info("batch_size_per_dev: {}".format(batch_size_per_dev))

196
    data_loader, avg_loss, lr, pred, grts, masks, emb_loss, seg_loss, accuracy, fp, fn = build_model(
L
LielinJiang 已提交
197
        train_prog, startup_prog, phase=ModelPhase.TRAIN)
198
    data_loader.set_sample_generator(
L
LielinJiang 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
        data_generator, batch_size=batch_size_per_dev, drop_last=drop_last)

    exe = fluid.Executor(place)
    exe.run(startup_prog)

    exec_strategy = fluid.ExecutionStrategy()
    # Clear temporary variables every 100 iteration
    if args.use_gpu:
        exec_strategy.num_threads = fluid.core.get_cuda_device_count()
    exec_strategy.num_iteration_per_drop_scope = 100
    build_strategy = fluid.BuildStrategy()

    if cfg.NUM_TRAINERS > 1 and args.use_gpu:
        dist_utils.prepare_for_multi_process(exe, build_strategy, train_prog)
        exec_strategy.num_threads = 1

    if cfg.TRAIN.SYNC_BATCH_NORM and args.use_gpu:
        if dev_count > 1:
            # Apply sync batch norm strategy
            print_info("Sync BatchNorm strategy is effective.")
            build_strategy.sync_batch_norm = True
        else:
            print_info(
                "Sync BatchNorm strategy will not be effective if GPU device"
                " count <= 1")
    compiled_train_prog = fluid.CompiledProgram(train_prog).with_data_parallel(
        loss_name=avg_loss.name,
        exec_strategy=exec_strategy,
        build_strategy=build_strategy)

    # Resume training
    begin_epoch = cfg.SOLVER.BEGIN_EPOCH
    if cfg.TRAIN.RESUME_MODEL_DIR:
        begin_epoch = load_checkpoint(exe, train_prog)
    # Load pretrained model
    elif os.path.exists(cfg.TRAIN.PRETRAINED_MODEL_DIR):
W
wuyefeilin 已提交
235
        load_pretrained_weights(exe, train_prog, cfg.TRAIN.PRETRAINED_MODEL_DIR)
L
LielinJiang 已提交
236 237 238 239 240 241
    else:
        print_info(
            'Pretrained model dir {} not exists, training from scratch...'.
            format(cfg.TRAIN.PRETRAINED_MODEL_DIR))

    # fetch_list = [avg_loss.name, lr.name, accuracy.name, precision.name, recall.name]
242 243 244 245
    fetch_list = [
        avg_loss.name, lr.name, seg_loss.name, emb_loss.name, accuracy.name,
        fp.name, fn.name
    ]
L
LielinJiang 已提交
246 247 248 249 250 251 252 253
    if args.debug:
        # Fetch more variable info and use streaming confusion matrix to
        # calculate IoU results if in debug mode
        np.set_printoptions(
            precision=4, suppress=True, linewidth=160, floatmode="fixed")
        fetch_list.extend([pred.name, grts.name, masks.name])
        # cm = ConfusionMatrix(cfg.DATASET.NUM_CLASSES, streaming=True)

254 255 256
    if args.use_vdl:
        if not args.vdl_log_dir:
            print_info("Please specify the log directory by --vdl_log_dir.")
L
LielinJiang 已提交
257 258
            exit(1)

259 260
        from visualdl import LogWriter
        log_writer = LogWriter(args.vdl_log_dir)
L
LielinJiang 已提交
261 262 263

    # trainer_id = int(os.getenv("PADDLE_TRAINER_ID", 0))
    # num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
264
    step = 0
L
LielinJiang 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
    all_step = cfg.DATASET.TRAIN_TOTAL_IMAGES // cfg.BATCH_SIZE
    if cfg.DATASET.TRAIN_TOTAL_IMAGES % cfg.BATCH_SIZE and drop_last != True:
        all_step += 1
    all_step *= (cfg.SOLVER.NUM_EPOCHS - begin_epoch + 1)

    avg_loss = 0.0
    avg_seg_loss = 0.0
    avg_emb_loss = 0.0
    avg_acc = 0.0
    avg_fp = 0.0
    avg_fn = 0.0
    timer = Timer()
    timer.start()
    if begin_epoch > cfg.SOLVER.NUM_EPOCHS:
        raise ValueError(
            ("begin epoch[{}] is larger than cfg.SOLVER.NUM_EPOCHS[{}]").format(
                begin_epoch, cfg.SOLVER.NUM_EPOCHS))

    if args.use_mpio:
        print_info("Use multiprocess reader")
    else:
        print_info("Use multi-thread reader")

    for epoch in range(begin_epoch, cfg.SOLVER.NUM_EPOCHS + 1):
289
        data_loader.start()
L
LielinJiang 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303
        while True:
            try:
                # If not in debug mode, avoid unnessary log and calculate
                loss, lr, out_seg_loss, out_emb_loss, out_acc, out_fp, out_fn = exe.run(
                    program=compiled_train_prog,
                    fetch_list=fetch_list,
                    return_numpy=True)

                avg_loss += np.mean(np.array(loss))
                avg_seg_loss += np.mean(np.array(out_seg_loss))
                avg_emb_loss += np.mean(np.array(out_emb_loss))
                avg_acc += np.mean(out_acc)
                avg_fp += np.mean(out_fp)
                avg_fn += np.mean(out_fn)
304
                step += 1
L
LielinJiang 已提交
305

306
                if step % args.log_steps == 0 and cfg.TRAINER_ID == 0:
L
LielinJiang 已提交
307 308 309 310 311 312 313 314
                    avg_loss /= args.log_steps
                    avg_seg_loss /= args.log_steps
                    avg_emb_loss /= args.log_steps
                    avg_acc /= args.log_steps
                    avg_fp /= args.log_steps
                    avg_fn /= args.log_steps
                    speed = args.log_steps / timer.elapsed_time()
                    print((
315
                        "epoch={} step={} lr={:.5f} loss={:.4f} seg_loss={:.4f} emb_loss={:.4f} accuracy={:.4} fp={:.4} fn={:.4} step/sec={:.3f} | ETA {}"
316
                    ).format(epoch, step, lr[0], avg_loss, avg_seg_loss,
317
                             avg_emb_loss, avg_acc, avg_fp, avg_fn, speed,
318 319
                             calculate_eta(all_step - step, speed)))
                    if args.use_vdl:
W
wuyefeilin 已提交
320
                        log_writer.add_scalar('Train/loss', avg_loss, step)
321 322
                        log_writer.add_scalar('Train/lr', lr[0], step)
                        log_writer.add_scalar('Train/speed', speed, step)
L
LielinJiang 已提交
323 324 325 326 327 328 329 330 331 332
                    sys.stdout.flush()
                    avg_loss = 0.0
                    avg_seg_loss = 0.0
                    avg_emb_loss = 0.0
                    avg_acc = 0.0
                    avg_fp = 0.0
                    avg_fn = 0.0
                    timer.restart()

            except fluid.core.EOFException:
333
                data_loader.reset()
L
LielinJiang 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347
                break
            except Exception as e:
                print(e)

        if epoch % cfg.TRAIN.SNAPSHOT_EPOCH == 0 and cfg.TRAINER_ID == 0:
            ckpt_dir = save_checkpoint(exe, train_prog, epoch)

            if args.do_eval:
                print("Evaluation start")
                accuracy, fp, fn = evaluate(
                    cfg=cfg,
                    ckpt_dir=ckpt_dir,
                    use_gpu=args.use_gpu,
                    use_mpio=args.use_mpio)
348
                if args.use_vdl:
W
wuyefeilin 已提交
349
                    log_writer.add_scalar('Evaluate/accuracy', accuracy, step)
350 351
                    log_writer.add_scalar('Evaluate/fp', fp, step)
                    log_writer.add_scalar('Evaluate/fn', fn, step)
L
LielinJiang 已提交
352

353 354
            # Use VisualDL to visualize results
            if args.use_vdl and cfg.DATASET.VIS_FILE_LIST is not None:
L
LielinJiang 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
                visualize(
                    cfg=cfg,
                    use_gpu=args.use_gpu,
                    vis_file_list=cfg.DATASET.VIS_FILE_LIST,
                    vis_dir="visual",
                    ckpt_dir=ckpt_dir,
                    log_writer=log_writer)

    # save final model
    if cfg.TRAINER_ID == 0:
        save_checkpoint(exe, train_prog, 'final')


def main(args):
    if args.cfg_file is not None:
        cfg.update_from_file(args.cfg_file)
    if args.opts:
        cfg.update_from_list(args.opts)

    cfg.TRAINER_ID = int(os.getenv("PADDLE_TRAINER_ID", 0))
    cfg.NUM_TRAINERS = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))

    cfg.check_and_infer()
    print_info(pprint.pformat(cfg))
    train(cfg)


if __name__ == '__main__':
    args = parse_args()
    if fluid.core.is_compiled_with_cuda() != True and args.use_gpu == True:
        print(
            "You can not set use_gpu = True in the model because you are using paddlepaddle-cpu."
        )
        print(
            "Please: 1. Install paddlepaddle-gpu to run your models on GPU or 2. Set use_gpu=False to run models on CPU."
        )
        sys.exit(1)
    main(args)