quant_online.py 4.6 KB
Newer Older
W
wuyefeilin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
import argparse
from datasets.dataset import Dataset
from models import HumanSegMobile, HumanSegLite, HumanSegServer
import transforms

MODEL_TYPE = ['HumanSegMobile', 'HumanSegLite', 'HumanSegServer']


def parse_args():
    parser = argparse.ArgumentParser(description='HumanSeg training')
    parser.add_argument(
        '--model_type',
        dest='model_type',
        help=
        "Model type for traing, which is one of ('HumanSegMobile', 'HumanSegLite', 'HumanSegServer')",
        type=str,
        default='HumanSegMobile')
    parser.add_argument(
        '--data_dir',
        dest='data_dir',
        help='The root directory of dataset',
        type=str)
    parser.add_argument(
        '--train_list',
        dest='train_list',
        help='Train list file of dataset',
        type=str)
    parser.add_argument(
        '--val_list',
        dest='val_list',
        help='Val list file of dataset',
        type=str,
        default=None)
    parser.add_argument(
        '--save_dir',
        dest='save_dir',
        help='The directory for saving the model snapshot',
        type=str,
        default='./output/quant_train')
    parser.add_argument(
        '--num_classes',
        dest='num_classes',
        help='Number of classes',
        type=int,
        default=2)
    parser.add_argument(
        '--num_epochs',
        dest='num_epochs',
        help='Number epochs for training',
        type=int,
        default=2)
    parser.add_argument(
        '--batch_size',
        dest='batch_size',
        help='Mini batch size',
        type=int,
        default=128)
    parser.add_argument(
        '--learning_rate',
        dest='learning_rate',
        help='Learning rate',
        type=float,
        default=0.001)
    parser.add_argument(
        '--pretrained_weights',
        dest='pretrained_weights',
        help='The model path for quant',
        type=str,
        default=None)
    parser.add_argument(
        '--save_interval_epochs',
        dest='save_interval_epochs',
        help='The interval epochs for save a model snapshot',
        type=int,
        default=1)
C
chenguowei01 已提交
91 92 93 94 95 96 97
    parser.add_argument(
        "--image_shape",
        dest="image_shape",
        help="The image shape for net inputs.",
        nargs=2,
        default=[192, 192],
        type=int)
98 99 100 101 102 103 104

    return parser.parse_args()


def train(args):
    train_transforms = transforms.Compose([
        transforms.RandomHorizontalFlip(),
C
chenguowei01 已提交
105
        transforms.Resize(args.image_shape),
106 107 108 109
        transforms.Normalize()
    ])

    eval_transforms = transforms.Compose(
C
chenguowei01 已提交
110
        [transforms.Resize(args.image_shape),
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
         transforms.Normalize()])

    train_dataset = Dataset(
        data_dir=args.data_dir,
        file_list=args.train_list,
        transforms=train_transforms,
        num_workers='auto',
        buffer_size=100,
        parallel_method='thread',
        shuffle=True)

    eval_dataset = None
    if args.val_list is not None:
        eval_dataset = Dataset(
            data_dir=args.data_dir,
            file_list=args.val_list,
            transforms=eval_transforms,
            num_workers='auto',
            buffer_size=100,
            parallel_method='thread',
            shuffle=False)

    if args.model_type == 'HumanSegMobile':
        model = HumanSegMobile(num_classes=2)
    elif args.model_type == 'HumanSegLite':
        model = HumanSegLite(num_classes=2)
    elif args.model_type == 'HumanSegServer':
        model = HumanSegServer(num_classes=2)
    else:
        raise ValueError(
            "--model_type: {} is set wrong, it shold be one of ('HumanSegMobile', "
            "'HumanSegLite', 'HumanSegServer')".format(args.model_type))
    model.train(
        num_epochs=args.num_epochs,
        train_dataset=train_dataset,
        train_batch_size=args.batch_size,
        eval_dataset=eval_dataset,
        save_interval_epochs=args.save_interval_epochs,
        save_dir=args.save_dir,
        pretrained_weights=args.pretrained_weights,
        learning_rate=args.learning_rate,
        quant=True)


if __name__ == '__main__':
    args = parse_args()
    train(args)