quant_online.py 4.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
import argparse
from datasets.dataset import Dataset
from models import HumanSegMobile, HumanSegLite, HumanSegServer
import transforms

MODEL_TYPE = ['HumanSegMobile', 'HumanSegLite', 'HumanSegServer']


def parse_args():
    parser = argparse.ArgumentParser(description='HumanSeg training')
    parser.add_argument(
        '--model_type',
        dest='model_type',
        help=
        "Model type for traing, which is one of ('HumanSegMobile', 'HumanSegLite', 'HumanSegServer')",
        type=str,
        default='HumanSegMobile')
    parser.add_argument(
        '--data_dir',
        dest='data_dir',
        help='The root directory of dataset',
        type=str)
    parser.add_argument(
        '--train_list',
        dest='train_list',
        help='Train list file of dataset',
        type=str)
    parser.add_argument(
        '--val_list',
        dest='val_list',
        help='Val list file of dataset',
        type=str,
        default=None)
    parser.add_argument(
        '--save_dir',
        dest='save_dir',
        help='The directory for saving the model snapshot',
        type=str,
        default='./output/quant_train')
    parser.add_argument(
        '--num_classes',
        dest='num_classes',
        help='Number of classes',
        type=int,
        default=2)
    parser.add_argument(
        '--num_epochs',
        dest='num_epochs',
        help='Number epochs for training',
        type=int,
        default=2)
    parser.add_argument(
        '--batch_size',
        dest='batch_size',
        help='Mini batch size',
        type=int,
        default=128)
    parser.add_argument(
        '--learning_rate',
        dest='learning_rate',
        help='Learning rate',
        type=float,
        default=0.001)
    parser.add_argument(
        '--pretrained_weights',
        dest='pretrained_weights',
        help='The model path for quant',
        type=str,
        default=None)
    parser.add_argument(
        '--save_interval_epochs',
        dest='save_interval_epochs',
        help='The interval epochs for save a model snapshot',
        type=int,
        default=1)
C
chenguowei01 已提交
76 77 78 79 80 81 82
    parser.add_argument(
        "--image_shape",
        dest="image_shape",
        help="The image shape for net inputs.",
        nargs=2,
        default=[192, 192],
        type=int)
83 84 85 86 87 88 89

    return parser.parse_args()


def train(args):
    train_transforms = transforms.Compose([
        transforms.RandomHorizontalFlip(),
C
chenguowei01 已提交
90
        transforms.Resize(args.image_shape),
91 92 93 94
        transforms.Normalize()
    ])

    eval_transforms = transforms.Compose(
C
chenguowei01 已提交
95
        [transforms.Resize(args.image_shape),
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
         transforms.Normalize()])

    train_dataset = Dataset(
        data_dir=args.data_dir,
        file_list=args.train_list,
        transforms=train_transforms,
        num_workers='auto',
        buffer_size=100,
        parallel_method='thread',
        shuffle=True)

    eval_dataset = None
    if args.val_list is not None:
        eval_dataset = Dataset(
            data_dir=args.data_dir,
            file_list=args.val_list,
            transforms=eval_transforms,
            num_workers='auto',
            buffer_size=100,
            parallel_method='thread',
            shuffle=False)

    if args.model_type == 'HumanSegMobile':
        model = HumanSegMobile(num_classes=2)
    elif args.model_type == 'HumanSegLite':
        model = HumanSegLite(num_classes=2)
    elif args.model_type == 'HumanSegServer':
        model = HumanSegServer(num_classes=2)
    else:
        raise ValueError(
            "--model_type: {} is set wrong, it shold be one of ('HumanSegMobile', "
            "'HumanSegLite', 'HumanSegServer')".format(args.model_type))
    model.train(
        num_epochs=args.num_epochs,
        train_dataset=train_dataset,
        train_batch_size=args.batch_size,
        eval_dataset=eval_dataset,
        save_interval_epochs=args.save_interval_epochs,
        save_dir=args.save_dir,
        pretrained_weights=args.pretrained_weights,
        learning_rate=args.learning_rate,
        quant=True)


if __name__ == '__main__':
    args = parse_args()
    train(args)