load_model.py 3.6 KB
Newer Older
W
wuyefeilin 已提交
1 2
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
W
wuyefeilin 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import yaml
import os.path as osp
import six
import copy
from collections import OrderedDict
import paddle.fluid as fluid
22 23
import utils.logging as logging
import models
W
wuyefeilin 已提交
24 25 26 27


def load_model(model_dir):
    if not osp.exists(osp.join(model_dir, "model.yml")):
28
        raise Exception("There's no model.yml in {}".format(model_dir))
W
wuyefeilin 已提交
29 30 31 32
    with open(osp.join(model_dir, "model.yml")) as f:
        info = yaml.load(f.read(), Loader=yaml.Loader)
    status = info['status']

33 34
    if not hasattr(models, info['Model']):
        raise Exception("There's no attribute {} in models".format(
W
wuyefeilin 已提交
35
            info['Model']))
36
    model = getattr(models, info['Model'])(**info['_init_params'])
W
wuyefeilin 已提交
37
    if status in ["Normal", "QuantOnline"]:
W
wuyefeilin 已提交
38 39 40 41 42 43 44
        startup_prog = fluid.Program()
        model.test_prog = fluid.Program()
        with fluid.program_guard(model.test_prog, startup_prog):
            with fluid.unique_name.guard():
                model.test_inputs, model.test_outputs = model.build_net(
                    mode='test')
        model.test_prog = model.test_prog.clone(for_test=True)
W
wuyefeilin 已提交
45 46 47 48 49
        if status == "QuantOnline":
            print('test quant online')
            import paddleslim as slim
            model.test_prog = slim.quant.quant_aware(
                model.test_prog, model.exe.place, for_test=True)
W
wuyefeilin 已提交
50
        model.exe.run(startup_prog)
W
wuyefeilin 已提交
51 52 53 54
        fluid.load(model.test_prog, osp.join(model_dir, 'model'))
        if status == "QuantOnline":
            model.test_prog = slim.quant.convert(model.test_prog,
                                                 model.exe.place)
W
wuyefeilin 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

    elif status in ['Infer', 'Quant']:
        [prog, input_names, outputs] = fluid.io.load_inference_model(
            model_dir, model.exe, params_filename='__params__')
        model.test_prog = prog
        test_outputs_info = info['_ModelInputsOutputs']['test_outputs']
        model.test_inputs = OrderedDict()
        model.test_outputs = OrderedDict()
        for name in input_names:
            model.test_inputs[name] = model.test_prog.global_block().var(name)
        for i, out in enumerate(outputs):
            var_desc = test_outputs_info[i]
            model.test_outputs[var_desc[0]] = out
    if 'test_transforms' in info:
        model.test_transforms = build_transforms(info['test_transforms'])
        model.eval_transforms = copy.deepcopy(model.test_transforms)

    if '_Attributes' in info:
        for k, v in info['_Attributes'].items():
            if k in model.__dict__:
                model.__dict__[k] = v

    logging.info("Model[{}] loaded.".format(info['Model']))
    return model


def build_transforms(transforms_info):
82
    import transforms as T
W
wuyefeilin 已提交
83 84 85 86 87 88 89 90 91 92
    transforms = list()
    for op_info in transforms_info:
        op_name = list(op_info.keys())[0]
        op_attr = op_info[op_name]
        if not hasattr(T, op_name):
            raise Exception(
                "There's no operator named '{}' in transforms".format(op_name))
        transforms.append(getattr(T, op_name)(**op_attr))
    eval_transforms = T.Compose(transforms)
    return eval_transforms