load_model.py 3.3 KB
Newer Older
W
wuyefeilin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import yaml
import os.path as osp
import six
import copy
from collections import OrderedDict
import paddle.fluid as fluid
21 22
import utils.logging as logging
import models
W
wuyefeilin 已提交
23 24 25 26 27 28 29 30 31


def load_model(model_dir):
    if not osp.exists(osp.join(model_dir, "model.yml")):
        raise Exception("There's not model.yml in {}".format(model_dir))
    with open(osp.join(model_dir, "model.yml")) as f:
        info = yaml.load(f.read(), Loader=yaml.Loader)
    status = info['status']

32 33
    if not hasattr(models, info['Model']):
        raise Exception("There's no attribute {} in models".format(
W
wuyefeilin 已提交
34
            info['Model']))
35
    model = getattr(models, info['Model'])(**info['_init_params'])
W
wuyefeilin 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
    if status == "Normal":
        startup_prog = fluid.Program()
        model.test_prog = fluid.Program()
        with fluid.program_guard(model.test_prog, startup_prog):
            with fluid.unique_name.guard():
                model.test_inputs, model.test_outputs = model.build_net(
                    mode='test')
        model.test_prog = model.test_prog.clone(for_test=True)
        model.exe.run(startup_prog)
        import pickle
        with open(osp.join(model_dir, 'model.pdparams'), 'rb') as f:
            load_dict = pickle.load(f)
        fluid.io.set_program_state(model.test_prog, load_dict)

    elif status in ['Infer', 'Quant']:
        [prog, input_names, outputs] = fluid.io.load_inference_model(
            model_dir, model.exe, params_filename='__params__')
        model.test_prog = prog
        test_outputs_info = info['_ModelInputsOutputs']['test_outputs']
        model.test_inputs = OrderedDict()
        model.test_outputs = OrderedDict()
        for name in input_names:
            model.test_inputs[name] = model.test_prog.global_block().var(name)
        for i, out in enumerate(outputs):
            var_desc = test_outputs_info[i]
            model.test_outputs[var_desc[0]] = out
    if 'test_transforms' in info:
        model.test_transforms = build_transforms(info['test_transforms'])
        model.eval_transforms = copy.deepcopy(model.test_transforms)

    if '_Attributes' in info:
        for k, v in info['_Attributes'].items():
            if k in model.__dict__:
                model.__dict__[k] = v

    logging.info("Model[{}] loaded.".format(info['Model']))
    return model


def build_transforms(transforms_info):
76
    import transforms as T
W
wuyefeilin 已提交
77 78 79 80 81 82 83 84 85 86
    transforms = list()
    for op_info in transforms_info:
        op_name = list(op_info.keys())[0]
        op_attr = op_info[op_name]
        if not hasattr(T, op_name):
            raise Exception(
                "There's no operator named '{}' in transforms".format(op_name))
        transforms.append(getattr(T, op_name)(**op_attr))
    eval_transforms = T.Compose(transforms)
    return eval_transforms