# coding: utf8 # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import ast import time import gflags import yaml import cv2 import numpy as np import paddle.fluid as fluid from concurrent.futures import ThreadPoolExecutor, as_completed gflags.DEFINE_string("conf", default="", help="Configuration File Path") gflags.DEFINE_string("input_dir", default="", help="Directory of Input Images") gflags.DEFINE_boolean("use_pr", default=False, help="Use optimized model") gflags.DEFINE_string("trt_mode", default="", help="Use optimized model") gflags.FLAGS = gflags.FLAGS # ColorMap for visualization color_map = [[128, 64, 128], [244, 35, 231], [69, 69, 69], [102, 102, 156], [190, 153, 153], [153, 153, 153], [250, 170, 29], [219, 219, 0], [106, 142, 35], [152, 250, 152], [69, 129, 180], [219, 19, 60], [255, 0, 0], [0, 0, 142], [0, 0, 69], [0, 60, 100], [0, 79, 100], [0, 0, 230], [119, 10, 32]] # Paddle-TRT Precision Map trt_precision_map = { "int8": fluid.core.AnalysisConfig.Precision.Int8, "fp32": fluid.core.AnalysisConfig.Precision.Float32, "fp16": fluid.core.AnalysisConfig.Precision.Half } # scan a directory and get all images with support extensions def get_images_from_dir(img_dir, support_ext=".jpg|.jpeg"): if (not os.path.exists(img_dir) or not os.path.isdir(img_dir)): raise Exception("Image Directory [%s] invalid" % img_dir) imgs = [] for item in os.listdir(img_dir): ext = os.path.splitext(item)[1][1:].strip().lower() if (len(ext) > 0 and ext in support_ext): item_path = os.path.join(img_dir, item) imgs.append(item_path) return imgs # Deploy Configuration File Parser class DeployConfig: def __init__(self, conf_file): if not os.path.exists(conf_file): raise Exception('Config file path [%s] invalid!' % conf_file) with open(conf_file) as fp: configs = yaml.load(fp, Loader=yaml.FullLoader) deploy_conf = configs["DEPLOY"] # 1. get eval_crop_size self.eval_crop_size = ast.literal_eval(deploy_conf["EVAL_CROP_SIZE"]) # 2. get mean self.mean = deploy_conf["MEAN"] # 3. get std self.std = deploy_conf["STD"] # 4. get class_num self.class_num = deploy_conf["NUM_CLASSES"] # 5. get paddle model and params file path self.model_file = os.path.join( deploy_conf["MODEL_PATH"], deploy_conf["MODEL_FILENAME"]) self.param_file = os.path.join( deploy_conf["MODEL_PATH"], deploy_conf["PARAMS_FILENAME"]) # 6. use_gpu self.use_gpu = deploy_conf["USE_GPU"] # 7. predictor_mode self.predictor_mode = deploy_conf["PREDICTOR_MODE"] # 8. batch_size self.batch_size = deploy_conf["BATCH_SIZE"] # 9. channels self.channels = deploy_conf["CHANNELS"] class ImageReader: def __init__(self, configs): self.config = configs self.threads_pool = ThreadPoolExecutor(configs.batch_size) # image processing thread worker def process_worker(self, imgs, idx, use_pr=False): image_path = imgs[idx] im = cv2.imread(image_path, -1) channels = im.shape[2] ori_h = im.shape[0] ori_w = im.shape[1] if channels == 1: im = cv2.cvtColor(im, cv2.COLOR_GRAY2BGR) channels = im.shape[2] if channels != 3 and channels != 4: print("Only support rgb(gray) or rgba image.") return -1 # resize to eval_crop_size eval_crop_size = self.config.eval_crop_size if (ori_h != eval_crop_size[0] or ori_w != eval_crop_size[1]): im = cv2.resize( im, eval_crop_size, fx=0, fy=0, interpolation=cv2.INTER_LINEAR) # if use models with no pre-processing/post-processing op optimizations if not use_pr: im_mean = np.array(self.config.mean).reshape((3, 1, 1)) im_std = np.array(self.config.std).reshape((3, 1, 1)) # HWC -> CHW, don't use transpose((2, 0, 1)) im = im.swapaxes(1, 2) im = im.swapaxes(0, 1) im = im[:, :, :].astype('float32') / 255.0 im -= im_mean im /= im_std im = im[np.newaxis,:,:,:] info = [image_path, im, (ori_w, ori_h)] return info # process multiple images with multithreading def process(self, imgs, use_pr=False): imgs_data = [] with ThreadPoolExecutor(max_workers=self.config.batch_size) as exec: tasks = [exec.submit(self.process_worker, imgs, idx, use_pr) for idx in range(len(imgs))] for task in as_completed(tasks): imgs_data.append(task.result()) return imgs_data class Predictor: def __init__(self, conf_file): self.config = DeployConfig(conf_file) self.image_reader = ImageReader(self.config) if self.config.predictor_mode == "NATIVE": predictor_config = fluid.core.NativeConfig() predictor_config.prog_file = self.config.model_file predictor_config.param_file = self.config.param_file predictor_config.use_gpu = config.use_gpu predictor_config.device = 0 predictor_config.fraction_of_gpu_memory = 0 elif self.config.predictor_mode == "ANALYSIS": predictor_config = fluid.core.AnalysisConfig( self.config.model_file, self.config.param_file) if self.config.use_gpu: predictor_config.enable_use_gpu(100, 0) predictor_config.switch_ir_optim(True) if gflags.FLAGS.trt_mode != "": precision_type = trt_precision_map[gflags.FLAGS.trt_mode] use_calib = (gflags.FLAGS.trt_mode == "int8") predictor_config.enable_tensorrt_engine( workspace_size=1<<30, max_batch_size=self.config.batch_size, min_subgraph_size=40, precision_mode=precision_type, use_static=False, use_calib_mode=use_calib) else: predictor_config.disable_gpu() predictor_config.switch_specify_input_names(True) predictor_config.enable_memory_optim() self.predictor = fluid.core.create_paddle_predictor(predictor_config) def create_tensor(self, inputs, batch_size, use_pr=False): im_tensor = fluid.core.PaddleTensor() im_tensor.name = "image" if not use_pr: im_tensor.shape = [batch_size, self.config.channels, self.config.eval_crop_size[1], self.config.eval_crop_size[0]] else: im_tensor.shape = [batch_size, self.config.eval_crop_size[1], self.config.eval_crop_size[0], self.config.channels] im_tensor.dtype = fluid.core.PaddleDType.FLOAT32 im_tensor.data = fluid.core.PaddleBuf(inputs.ravel().astype("float32")) return [im_tensor] # save prediction results and visualization them def output_result(self, imgs_data, infer_out, use_pr=False): for idx in range(len(imgs_data)): img_name = imgs_data[idx][0] ori_shape = imgs_data[idx][2] mask = infer_out[idx] if not use_pr: mask = np.argmax(mask, axis=0) mask = mask.astype('uint8') mask_png = mask score_png = mask_png[:, :, np.newaxis] score_png = np.concatenate([score_png] * 3, axis=2) # visualization score png for i in range(score_png.shape[0]): for j in range(score_png.shape[1]): score_png[i, j] = color_map[score_png[i, j, 0]] # save the mask # mask of xxx.jpeg will be saved as xxx_jpeg_mask.png ext_pos = img_name.rfind(".") img_name_fix = img_name[:ext_pos] + "_" + img_name[ext_pos + 1:] mask_save_name = img_name_fix + "_mask.png" cv2.imwrite(mask_save_name, mask_png, [cv2.CV_8UC1]) # save the visualized result # result of xxx.jpeg will be saved as xxx_jpeg_result.png vis_result_name = img_name_fix + "_result.png" result_png = score_png # if not use_pr: result_png = cv2.resize(result_png, ori_shape, fx=0, fy=0, interpolation=cv2.INTER_CUBIC) cv2.imwrite(vis_result_name, result_png, [cv2.CV_8UC1]) print("save result of [" + img_name + "] done.") def predict(self, images): # image reader preprocessing time cost reader_time = 0 # inference time cost infer_time = 0 # post_processing: generate mask and visualize it post_time = 0 # total time cost: preprocessing + inference + postprocessing total_runtime = 0 # record starting time point total_start = time.time() batch_size = self.config.batch_size for i in range(0, len(images), batch_size): real_batch_size = batch_size if i + batch_size >= len(images): real_batch_size = len(images) - i reader_start = time.time() img_datas = self.image_reader.process(images[i: i + real_batch_size]) input_data = np.concatenate([item[1] for item in img_datas]) input_data = self.create_tensor( input_data, real_batch_size, use_pr=gflags.FLAGS.use_pr) reader_end = time.time() infer_start = time.time() output_data = self.predictor.run(input_data)[0] infer_end = time.time() reader_time += (reader_end - reader_start) infer_time += (infer_end - infer_start) output_data = output_data.as_ndarray() post_start = time.time() self.output_result(img_datas, output_data, gflags.FLAGS.use_pr) post_end = time.time() post_time += (post_end - post_start) # finishing process all images total_end = time.time() # compute whole processing time total_runtime = (total_end - total_start) print("images_num=[%d],preprocessing_time=[%f],infer_time=[%f],postprocessing_time=[%f],total_runtime=[%f]" % (len(images), reader_time, infer_time, post_time, total_runtime)) def run(deploy_conf, imgs_dir, support_extensions=".jpg|.jpeg"): # 1. scan and get all images with valid extensions in directory imgs_dir imgs = get_images_from_dir(imgs_dir) if len(imgs) == 0: print("No Image (with extensions : %s) found in [%s]" % (support_extensions, imgs_dir)) return -1 # 2. create a predictor seg_predictor = Predictor(deploy_conf) # 3. do a inference on images seg_predictor.predict(imgs) return 0 if __name__ == "__main__": # 0. parse the arguments gflags.FLAGS(sys.argv) if (gflags.FLAGS.conf == "" or gflags.FLAGS.input_dir == ""): print("Usage: python infer.py --conf=/config/path/to/your/model " +"--input_dir=/directory/of/your/input/images [--use_pr=True]") exit(-1) # set empty to turn off as default trt_mode = gflags.FLAGS.trt_mode if (trt_mode != "" and trt_mode not in trt_precision_map): print("Invalid trt_mode [%s], only support[int8, fp16, fp32]" % trt_mode) exit(-1) # run inference run(gflags.FLAGS.conf, gflags.FLAGS.input_dir)