pspnet.py 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import paddle.nn.functional as F
from paddle import nn
from paddleseg.cvlibs import manager
M
michaelowenliu 已提交
20 21
from paddleseg.models.common import pyramid_pool
from paddleseg.models.common.layer_libs import ConvBNReLU, AuxLayer
22 23 24 25 26 27 28 29
from paddleseg.utils import utils


@manager.MODELS.add_component
class PSPNet(nn.Layer):
    """
    The PSPNet implementation based on PaddlePaddle.

M
michaelowenliu 已提交
30
    The original article refers to
31 32 33 34 35 36 37
        Zhao, Hengshuang, et al. "Pyramid scene parsing network."
        Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
        (https://openaccess.thecvf.com/content_cvpr_2017/papers/Zhao_Pyramid_Scene_Parsing_CVPR_2017_paper.pdf)

    Args:
        num_classes (int): the unique number of target classes.
        backbone (Paddle.nn.Layer): backbone network, currently support Resnet50/101.
M
michaelowenliu 已提交
38 39
        model_pretrained (str): the path of pretrained model. Default to None.
        backbone_indices (tuple): two values in the tuple indicate the indices of output of backbone.
40 41
        pp_out_channels (int): output channels after Pyramid Pooling Module. Default to 1024.
        bin_sizes (tuple): the out size of pooled feature maps. Default to (1,2,3,6).
M
michaelowenliu 已提交
42
        enable_auxiliary_loss (bool): a bool values indicates whether adding auxiliary loss. Default to True.
M
michaelowenliu 已提交
43
        pretrained (str): the path of pretrained model. Default to None.
44 45 46 47 48 49 50 51
    """

    def __init__(self,
                 num_classes,
                 backbone,
                 backbone_indices=(2, 3),
                 pp_out_channels=1024,
                 bin_sizes=(1, 2, 3, 6),
M
michaelowenliu 已提交
52 53
                 enable_auxiliary_loss=True,
                 pretrained=None):
54 55 56 57

        super(PSPNet, self).__init__()

        self.backbone = backbone
M
michaelowenliu 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
        backbone_channels = [
            backbone.feat_channels[i] for i in backbone_indices
        ]

        self.head = PSPNetHead(
            num_classes, 
            backbone_indices,
            backbone_channels,
            pp_out_channels,
            bin_sizes,
            enable_auxiliary_loss)

        utils.load_entire_model(self, pretrained)

    def forward(self, input):
        feat_list = self.backbone(input)
        logit_list = self.head(feat_list)
        return [
            F.resize_bilinear(logit, input.shape[2:]) for logit in logit_list
        ]


class PSPNetHead(nn.Layer):
    """
    The PSPNetHead implementation.

    Args:
        num_classes (int): the unique number of target classes.
        backbone_indices (tuple): two values in the tuple indicate the indices of output of backbone.
            the first index will be taken as a deep-supervision feature in auxiliary layer;
            the second one will be taken as input of Pyramid Pooling Module (PPModule).
            Usually backbone consists of four downsampling stage, and return an output of
            each stage, so we set default (2, 3), which means taking feature map of the third
            stage (res4b22) in backbone, and feature map of the fourth stage (res5c) as input of PPModule.
        backbone_channels (tuple): the same length with "backbone_indices". It indicates the channels of corresponding index.
        pp_out_channels (int): output channels after Pyramid Pooling Module. Default to 1024.
        bin_sizes (tuple): the out size of pooled feature maps. Default to (1,2,3,6).
        enable_auxiliary_loss (bool): a bool values indicates whether adding auxiliary loss. Default to True.
    """

    def __init__(self,
                 num_classes,
                 backbone_indices=(2, 3),
                 backbone_channels=(1024, 2048),
                 pp_out_channels=1024,
                 bin_sizes=(1, 2, 3, 6),
                 enable_auxiliary_loss=True):

        super(PSPNetHead, self).__init__()

108 109
        self.backbone_indices = backbone_indices

M
michaelowenliu 已提交
110
        self.psp_module = pyramid_pool.PPModule(
111 112 113 114 115 116 117 118 119 120
            in_channels=backbone_channels[1],
            out_channels=pp_out_channels,
            bin_sizes=bin_sizes)

        self.conv = nn.Conv2d(
            in_channels=pp_out_channels,
            out_channels=num_classes,
            kernel_size=1)

        if enable_auxiliary_loss:
M
michaelowenliu 已提交
121 122 123

            self.auxlayer = AuxLayer(
                in_channels=backbone_channels[0],
M
michaelowenliu 已提交
124 125
                inter_channels=backbone_channels[0] // 4,
                out_channels=num_classes)
126 127 128

        self.enable_auxiliary_loss = enable_auxiliary_loss

M
michaelowenliu 已提交
129
        self.init_weight()
130

M
michaelowenliu 已提交
131
    def forward(self, feat_list):
132 133 134 135 136 137 138 139 140
        logit_list = []
        x = feat_list[self.backbone_indices[1]]
        x = self.psp_module(x)
        x = F.dropout(x, p=0.1)  # dropout_prob
        logit = self.conv(x)
        logit_list.append(logit)

        if self.enable_auxiliary_loss:
            auxiliary_feat = feat_list[self.backbone_indices[0]]
M
michaelowenliu 已提交
141
            auxiliary_logit = self.auxlayer(auxiliary_feat)
142 143 144 145 146 147 148 149
            logit_list.append(auxiliary_logit)

        return logit_list

    def init_weight(self, pretrained_model=None):
        """
        Initialize the parameters of model parts.
        """
M
michaelowenliu 已提交
150 151
        pass