seg_conf_parser.h 5.7 KB
Newer Older
J
joey12300 已提交
1 2 3 4 5 6
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
7
// http://www.apache.org/licenses/LICENSE-2.0
J
joey12300 已提交
8 9 10 11 12 13 14
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
#pragma once
#include <yaml-cpp/yaml.h>
#include <iostream>
#include <vector>
#include <string>

namespace PaddleSolution {
class PaddleSegModelConfigPaser {
 public:
    PaddleSegModelConfigPaser()
        :_class_num(0),
        _channels(0),
        _use_gpu(0),
        _batch_size(1),
        _model_file_name("__model__"),
        _param_file_name("__params__") {
    }
    ~PaddleSegModelConfigPaser() {
    }

    void reset() {
        _resize.clear();
        _mean.clear();
        _std.clear();
        _img_type.clear();
        _class_num = 0;
        _channels = 0;
        _use_gpu = 0;
        _batch_size = 1;
        _model_file_name.clear();
        _model_path.clear();
        _param_file_name.clear();
    }

    std::string process_parenthesis(const std::string& str) {
        if (str.size() < 2) {
            return str;
        }
        std::string nstr(str);
        if (str[0] == '(' && str.back() == ')') {
            nstr[0] = '[';
            nstr[str.size() - 1] = ']';
        }
        return nstr;
    }

    template <typename T>
    std::vector<T> parse_str_to_vec(const std::string& str) {
        std::vector<T> data;
        auto node = YAML::Load(str);
        for (const auto& item : node) {
            data.push_back(item.as<T>());
        }
        return data;
    }

    bool load_config(const std::string& conf_file) {
        reset();

        YAML::Node config = YAML::LoadFile(conf_file);
        // 1. get resize
        auto str = config["DEPLOY"]["EVAL_CROP_SIZE"].as<std::string>();
        _resize = parse_str_to_vec<int>(process_parenthesis(str));

        // 2. get mean
        for (const auto& item : config["DEPLOY"]["MEAN"]) {
            _mean.push_back(item.as<float>());
        }

        // 3. get std
        for (const auto& item : config["DEPLOY"]["STD"]) {
            _std.push_back(item.as<float>());
        }

        // 4. get image type
        _img_type = config["DEPLOY"]["IMAGE_TYPE"].as<std::string>();
        // 5. get class number
        _class_num = config["DEPLOY"]["NUM_CLASSES"].as<int>();
        // 7. set model path
        _model_path = config["DEPLOY"]["MODEL_PATH"].as<std::string>();
        // 8. get model file_name
        _model_file_name = config["DEPLOY"]["MODEL_FILENAME"].as<std::string>();
        // 9. get model param file name
        _param_file_name =
                        config["DEPLOY"]["PARAMS_FILENAME"].as<std::string>();
        // 10. get pre_processor
        _pre_processor = config["DEPLOY"]["PRE_PROCESSOR"].as<std::string>();
        // 11. use_gpu
        _use_gpu = config["DEPLOY"]["USE_GPU"].as<int>();
        // 12. predictor_mode
        _predictor_mode = config["DEPLOY"]["PREDICTOR_MODE"].as<std::string>();
        // 13. batch_size
        _batch_size = config["DEPLOY"]["BATCH_SIZE"].as<int>();
        // 14. channels
        _channels = config["DEPLOY"]["CHANNELS"].as<int>();
        return true;
    }

    void debug() const {
        std::cout << "EVAL_CROP_SIZE: ("
                  << _resize[0] << ", " << _resize[1]
                  << ")" << std::endl;
        std::cout << "MEAN: [";
        for (int i = 0; i < _mean.size(); ++i) {
            if (i != _mean.size() - 1) {
                std::cout << _mean[i] << ", ";
            } else {
                std::cout << _mean[i];
            }
        }
        std::cout << "]" << std::endl;

        std::cout << "STD: [";
        for (int i = 0; i < _std.size(); ++i) {
            if (i != _std.size() - 1) {
                std::cout << _std[i] << ", ";
            } else {
                std::cout << _std[i];
            }
        }
        std::cout << "]" << std::endl;

        std::cout << "DEPLOY.IMAGE_TYPE: " << _img_type << std::endl;
        std::cout << "DEPLOY.NUM_CLASSES: " << _class_num << std::endl;
        std::cout << "DEPLOY.CHANNELS: " << _channels << std::endl;
        std::cout << "DEPLOY.MODEL_PATH: " << _model_path << std::endl;
        std::cout << "DEPLOY.MODEL_FILENAME: " << _model_file_name << std::endl;
        std::cout << "DEPLOY.PARAMS_FILENAME: "
                  << _param_file_name << std::endl;
        std::cout << "DEPLOY.PRE_PROCESSOR: " << _pre_processor << std::endl;
        std::cout << "DEPLOY.USE_GPU: " << _use_gpu << std::endl;
        std::cout << "DEPLOY.PREDICTOR_MODE: " << _predictor_mode << std::endl;
        std::cout << "DEPLOY.BATCH_SIZE: " << _batch_size << std::endl;
    }

    // DEPLOY.EVAL_CROP_SIZE
    std::vector<int> _resize;
    // DEPLOY.MEAN
    std::vector<float> _mean;
    // DEPLOY.STD
    std::vector<float> _std;
    // DEPLOY.IMAGE_TYPE
    std::string _img_type;
    // DEPLOY.NUM_CLASSES
    int _class_num;
    // DEPLOY.CHANNELS
    int _channels;
    // DEPLOY.MODEL_PATH
    std::string _model_path;
    // DEPLOY.MODEL_FILENAME
    std::string _model_file_name;
    // DEPLOY.PARAMS_FILENAME
    std::string _param_file_name;
    // DEPLOY.PRE_PROCESSOR
    std::string _pre_processor;
    // DEPLOY.USE_GPU
    int _use_gpu;
    // DEPLOY.PREDICTOR_MODE
    std::string _predictor_mode;
    // DEPLOY.BATCH_SIZE
    int _batch_size;
};

}  // namespace PaddleSolution