seg_conf_parser.h 6.3 KB
Newer Older
J
joey12300 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

W
wuzewu 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
#pragma once
#include <iostream>
#include <vector>
#include <string>

#include <yaml-cpp/yaml.h>
namespace PaddleSolution {

    class PaddleSegModelConfigPaser {
    public:
        PaddleSegModelConfigPaser()
            :_class_num(0),
            _channels(0),
            _use_gpu(0),
            _batch_size(1),
            _model_file_name("__model__"),
            _param_file_name("__params__") {
        }
        ~PaddleSegModelConfigPaser() {
        }

        void reset() {
            _resize.clear();
            _mean.clear();
            _std.clear();
            _img_type.clear();
            _class_num = 0;
            _channels = 0;
            _use_gpu = 0;
            _batch_size = 1;
            _model_file_name.clear();
            _model_path.clear();
            _param_file_name.clear();
        }

        std::string process_parenthesis(const std::string& str) {
            if (str.size() < 2) {
                return str;
            }
            std::string nstr(str);
            if (str[0] == '(' && str.back() == ')') {
                nstr[0] = '[';
                nstr[str.size() - 1] = ']';
            }
            return nstr;
        }

        template <typename T>
        std::vector<T> parse_str_to_vec(const std::string& str) {
            std::vector<T> data;
            auto node = YAML::Load(str);
            for (const auto& item : node) {
                data.push_back(item.as<T>());
            }
            return data;
        }

        bool load_config(const std::string& conf_file) {
S
sjtubinlong 已提交
73

W
wuzewu 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
            reset();

            YAML::Node config = YAML::LoadFile(conf_file);
            // 1. get resize
            auto str = config["DEPLOY"]["EVAL_CROP_SIZE"].as<std::string>();
            _resize = parse_str_to_vec<int>(process_parenthesis(str));

            // 2. get mean
            for (const auto& item : config["DEPLOY"]["MEAN"]) {
                _mean.push_back(item.as<float>());
            }

            // 3. get std
            for (const auto& item : config["DEPLOY"]["STD"]) {
                _std.push_back(item.as<float>());
            }

            // 4. get image type
            _img_type = config["DEPLOY"]["IMAGE_TYPE"].as<std::string>();
            // 5. get class number
            _class_num = config["DEPLOY"]["NUM_CLASSES"].as<int>();
            // 7. set model path
            _model_path = config["DEPLOY"]["MODEL_PATH"].as<std::string>();
            // 8. get model file_name
            _model_file_name = config["DEPLOY"]["MODEL_FILENAME"].as<std::string>();
            // 9. get model param file name
            _param_file_name = config["DEPLOY"]["PARAMS_FILENAME"].as<std::string>();
            // 10. get pre_processor
            _pre_processor = config["DEPLOY"]["PRE_PROCESSOR"].as<std::string>();
            // 11. use_gpu
            _use_gpu = config["DEPLOY"]["USE_GPU"].as<int>();
            // 12. predictor_mode
            _predictor_mode = config["DEPLOY"]["PREDICTOR_MODE"].as<std::string>();
            // 13. batch_size
            _batch_size = config["DEPLOY"]["BATCH_SIZE"].as<int>();
            // 14. channels
            _channels = config["DEPLOY"]["CHANNELS"].as<int>();
            return true;
        }

        void debug() const {
S
sjtubinlong 已提交
115

W
wuzewu 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
            std::cout << "EVAL_CROP_SIZE: (" << _resize[0] << ", " << _resize[1] << ")" << std::endl;

            std::cout << "MEAN: [";
            for (int i = 0; i < _mean.size(); ++i) {
                if (i != _mean.size() - 1) {
                    std::cout << _mean[i] << ", ";
                } else {
                    std::cout << _mean[i];
                }
            }
            std::cout << "]" << std::endl;

            std::cout << "STD: [";
            for (int i = 0; i < _std.size(); ++i) {
                if (i != _std.size() - 1) {
                    std::cout << _std[i] << ", ";
                }
                else {
                    std::cout << _std[i];
                }
            }
            std::cout << "]" << std::endl;

            std::cout << "DEPLOY.IMAGE_TYPE: " << _img_type << std::endl;
            std::cout << "DEPLOY.NUM_CLASSES: " << _class_num << std::endl;
            std::cout << "DEPLOY.CHANNELS: " << _channels << std::endl;
            std::cout << "DEPLOY.MODEL_PATH: " << _model_path << std::endl;
            std::cout << "DEPLOY.MODEL_FILENAME: " << _model_file_name << std::endl;
            std::cout << "DEPLOY.PARAMS_FILENAME: " << _param_file_name << std::endl;
            std::cout << "DEPLOY.PRE_PROCESSOR: " << _pre_processor << std::endl;
            std::cout << "DEPLOY.USE_GPU: " << _use_gpu << std::endl;
            std::cout << "DEPLOY.PREDICTOR_MODE: " << _predictor_mode << std::endl;
            std::cout << "DEPLOY.BATCH_SIZE: " << _batch_size << std::endl;
        }

        // DEPLOY.EVAL_CROP_SIZE
        std::vector<int> _resize;
        // DEPLOY.MEAN
        std::vector<float> _mean;
        // DEPLOY.STD
        std::vector<float> _std;
        // DEPLOY.IMAGE_TYPE
        std::string _img_type;
        // DEPLOY.NUM_CLASSES
        int _class_num;
        // DEPLOY.CHANNELS
        int _channels;
        // DEPLOY.MODEL_PATH
        std::string _model_path;
        // DEPLOY.MODEL_FILENAME
        std::string _model_file_name;
        // DEPLOY.PARAMS_FILENAME
        std::string _param_file_name;
        // DEPLOY.PRE_PROCESSOR
        std::string _pre_processor;
        // DEPLOY.USE_GPU
        int _use_gpu;
        // DEPLOY.PREDICTOR_MODE
        std::string _predictor_mode;
        // DEPLOY.BATCH_SIZE
        int _batch_size;
    };

}