seg_predictor.cpp 13.2 KB
Newer Older
J
joey12300 已提交
1 2 3 4 5 6
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
7
// http://www.apache.org/licenses/LICENSE-2.0
J
joey12300 已提交
8 9 10 11 12 13 14
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

W
wuzewu 已提交
15
#include "seg_predictor.h"
16
#include <unsupported/Eigen/CXX11/Tensor>
17
#undef min
W
wuzewu 已提交
18
namespace PaddleSolution {
19 20 21 22 23 24 25 26 27 28 29
    using std::chrono::duration_cast;
    int Predictor::init(const std::string& conf) {
        if (!_model_config.load_config(conf)) {
            LOG(FATAL) << "Fail to load config file: [" << conf << "]";
            return -1;
        }
        _preprocessor = PaddleSolution::create_processor(conf);
        if (_preprocessor == nullptr) {
            LOG(FATAL) << "Failed to create_processor";
            return -1;
        }
W
wuzewu 已提交
30

31 32 33
        int res_size = _model_config._resize[0] * _model_config._resize[1];
        _mask.resize(res_size);
        _scoremap.resize(res_size);
W
wuzewu 已提交
34

35 36 37 38
        bool use_gpu = _model_config._use_gpu;
        const auto& model_dir = _model_config._model_path;
        const auto& model_filename = _model_config._model_file_name;
        const auto& params_filename = _model_config._param_file_name;
W
wuzewu 已提交
39

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
        // load paddle model file
        if (_model_config._predictor_mode == "NATIVE") {
            paddle::NativeConfig config;
            auto prog_file = utils::path_join(model_dir, model_filename);
            auto param_file = utils::path_join(model_dir, params_filename);
            config.prog_file = prog_file;
            config.param_file = param_file;
            config.fraction_of_gpu_memory = 0;
            config.use_gpu = use_gpu;
            config.device = 0;
            _main_predictor = paddle::CreatePaddlePredictor(config);
        } else if (_model_config._predictor_mode == "ANALYSIS") {
            paddle::AnalysisConfig config;
            if (use_gpu) {
                config.EnableUseGpu(100, 0);
W
wuzewu 已提交
55
            }
56 57 58 59 60 61 62 63 64 65 66 67
            auto prog_file = utils::path_join(model_dir, model_filename);
            auto param_file = utils::path_join(model_dir, params_filename);
            config.SetModel(prog_file, param_file);
            config.SwitchUseFeedFetchOps(false);
            config.SwitchSpecifyInputNames(true);
            config.EnableMemoryOptim();
            _main_predictor = paddle::CreatePaddlePredictor(config);
        } else {
            return -1;
        }
        return 0;
    }
W
wuzewu 已提交
68

69 70 71 72 73
    int Predictor::predict(const std::vector<std::string>& imgs) {
        if (_model_config._predictor_mode == "NATIVE") {
            return native_predict(imgs);
        } else if (_model_config._predictor_mode == "ANALYSIS") {
            return analysis_predict(imgs);
W
wuzewu 已提交
74
        }
75 76
        return -1;
    }
W
wuzewu 已提交
77

78 79 80 81 82 83 84 85 86 87 88 89
    int Predictor::output_mask(const std::string& fname, float* p_out,
                               int length, int* height, int* width) {
        int eval_width = _model_config._resize[0];
        int eval_height = _model_config._resize[1];
        int eval_num_class = _model_config._class_num;

        int blob_out_len = length;
        int seg_out_len = eval_height * eval_width * eval_num_class;

        if (blob_out_len != seg_out_len) {
            LOG(ERROR) << " [FATAL] unequal: input vs output [" <<
                seg_out_len << "|" << blob_out_len << "]" << std::endl;
W
wuzewu 已提交
90 91
            return -1;
        }
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
        // post process
        _mask.clear();
        _scoremap.clear();
        std::vector<int> out_shape{eval_num_class, eval_height, eval_width};
        utils::argmax(p_out, out_shape, _mask, _scoremap);
        cv::Mat mask_png = cv::Mat(eval_height, eval_width, CV_8UC1);
        mask_png.data = _mask.data();
        std::string nname(fname);
        auto pos = fname.find(".");
        nname[pos] = '_';
        std::string mask_save_name = nname + ".png";
        cv::imwrite(mask_save_name, mask_png);
        cv::Mat scoremap_png = cv::Mat(eval_height, eval_width, CV_8UC1);
        scoremap_png.data = _scoremap.data();
        std::string scoremap_save_name = nname
                                       + std::string("_scoremap.png");
        cv::imwrite(scoremap_save_name, scoremap_png);
        std::cout << "save mask of [" << fname << "] done" << std::endl;
W
wuzewu 已提交
110

111 112 113 114 115 116 117 118 119 120 121 122 123
        if (height && width) {
            int recover_height = *height;
            int recover_width = *width;
            cv::Mat recover_png = cv::Mat(recover_height,
                                          recover_width, CV_8UC1);
            cv::resize(scoremap_png, recover_png,
                       cv::Size(recover_width, recover_height),
                       0, 0, cv::INTER_CUBIC);
            std::string recover_name = nname + std::string("_recover.png");
            cv::imwrite(recover_name, recover_png);
        }
        return 0;
    }
W
wuzewu 已提交
124

125 126 127 128 129 130
    int Predictor::native_predict(const std::vector<std::string>& imgs) {
        if (imgs.size() == 0) {
            LOG(ERROR) << "No image found";
            return -1;
        }
        int config_batch_size = _model_config._batch_size;
W
wuzewu 已提交
131

132 133 134 135 136 137 138 139 140 141
        int channels = _model_config._channels;
        int eval_width = _model_config._resize[0];
        int eval_height = _model_config._resize[1];
        std::size_t total_size = imgs.size();
        int default_batch_size = std::min(config_batch_size,
                                          static_cast<int>(total_size));
        int batch = total_size / default_batch_size
                  + ((total_size % default_batch_size) != 0);
        int batch_buffer_size = default_batch_size * channels
                              * eval_width * eval_height;
W
wuzewu 已提交
142

143 144 145 146
        auto& input_buffer = _buffer;
        auto& org_width = _org_width;
        auto& org_height = _org_height;
        auto& imgs_batch = _imgs_batch;
W
wuzewu 已提交
147

148 149 150 151 152 153 154
        input_buffer.resize(batch_buffer_size);
        org_width.resize(default_batch_size);
        org_height.resize(default_batch_size);
        for (int u = 0; u < batch; ++u) {
            int batch_size = default_batch_size;
            if (u == (batch - 1) && (total_size % default_batch_size)) {
                batch_size = total_size % default_batch_size;
W
wuzewu 已提交
155 156
            }

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
            int real_buffer_size = batch_size * channels
                                 * eval_width * eval_height;
            std::vector<paddle::PaddleTensor> feeds;
            input_buffer.resize(real_buffer_size);
            org_height.resize(batch_size);
            org_width.resize(batch_size);
            for (int i = 0; i < batch_size; ++i) {
                org_width[i] = org_height[i] = 0;
            }
            imgs_batch.clear();
            for (int i = 0; i < batch_size; ++i) {
                int idx = u * default_batch_size + i;
                imgs_batch.push_back(imgs[idx]);
            }
            if (!_preprocessor->batch_process(imgs_batch,
                                              input_buffer.data(),
                                              org_width.data(),
                                              org_height.data())) {
S
sjtubinlong 已提交
175 176
                return -1;
            }
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
            paddle::PaddleTensor im_tensor;
            im_tensor.name = "image";
            im_tensor.shape = std::vector<int>{ batch_size, channels,
                                                 eval_height, eval_width };
            im_tensor.data.Reset(input_buffer.data(),
                                 real_buffer_size * sizeof(float));
            im_tensor.dtype = paddle::PaddleDType::FLOAT32;
            feeds.push_back(im_tensor);
            _outputs.clear();
            auto t1 = std::chrono::high_resolution_clock::now();
            if (!_main_predictor->Run(feeds, &_outputs, batch_size)) {
                LOG(ERROR) <<
                   "Failed: NativePredictor->Run() return false at batch: "
                 << u;
                continue;
            }
            auto t2 = std::chrono::high_resolution_clock::now();
            auto duration = duration_cast<std::chrono::microseconds>
                            (t2 - t1).count();
            std::cout << "runtime = " << duration << std::endl;
            int out_num = 1;
            // print shape of first output tensor for debugging
            std::cout << "size of outputs[" << 0 << "]: (";
            for (int j = 0; j < _outputs[0].shape.size(); ++j) {
                out_num *= _outputs[0].shape[j];
                std::cout << _outputs[0].shape[j] << ",";
            }
            std::cout << ")" << std::endl;
            const size_t nums = _outputs.front().data.length()
                              / sizeof(float);
            if (out_num % batch_size != 0 || out_num != nums) {
                LOG(ERROR) << "outputs data size mismatch with shape size.";
                return -1;
W
wuzewu 已提交
210 211
            }

212 213 214 215 216 217 218 219 220
            for (int i = 0; i < batch_size; ++i) {
                float* output_addr = reinterpret_cast<float*>(
                                    _outputs[0].data.data())
                                   + i * (out_num / batch_size);
                output_mask(imgs_batch[i], output_addr,
                            out_num / batch_size,
                            &org_height[i],
                            &org_width[i]);
            }
W
wuzewu 已提交
221 222
        }

223 224
        return 0;
    }
W
wuzewu 已提交
225

226 227 228 229 230
    int Predictor::analysis_predict(const std::vector<std::string>& imgs) {
        if (imgs.size() == 0) {
            LOG(ERROR) << "No image found";
            return -1;
        }
S
sjtubinlong 已提交
231

232 233 234 235 236 237 238 239 240 241 242
        int config_batch_size = _model_config._batch_size;
        int channels = _model_config._channels;
        int eval_width = _model_config._resize[0];
        int eval_height = _model_config._resize[1];
        auto total_size = imgs.size();
        int default_batch_size = std::min(config_batch_size,
                                          static_cast<int>(total_size));
        int batch = total_size / default_batch_size
                  + ((total_size % default_batch_size) != 0);
        int batch_buffer_size = default_batch_size * channels
                              * eval_width * eval_height;
W
wuzewu 已提交
243

244 245 246 247
        auto& input_buffer = _buffer;
        auto& org_width = _org_width;
        auto& org_height = _org_height;
        auto& imgs_batch = _imgs_batch;
W
wuzewu 已提交
248

249 250 251
        input_buffer.resize(batch_buffer_size);
        org_width.resize(default_batch_size);
        org_height.resize(default_batch_size);
W
wuzewu 已提交
252

253 254 255 256 257
        for (int u = 0; u < batch; ++u) {
            int batch_size = default_batch_size;
            if (u == (batch - 1) && (total_size % default_batch_size)) {
                batch_size = total_size % default_batch_size;
            }
W
wuzewu 已提交
258

259 260 261 262 263 264 265 266 267 268 269 270 271 272
            int real_buffer_size = batch_size * channels
                                 * eval_width * eval_height;
            std::vector<paddle::PaddleTensor> feeds;
            input_buffer.resize(real_buffer_size);
            org_height.resize(batch_size);
            org_width.resize(batch_size);
            for (int i = 0; i < batch_size; ++i) {
                org_width[i] = org_height[i] = 0;
            }
            imgs_batch.clear();
            for (int i = 0; i < batch_size; ++i) {
                int idx = u * default_batch_size + i;
                imgs_batch.push_back(imgs[idx]);
            }
273

274 275 276 277 278 279 280 281 282 283
            if (!_preprocessor->batch_process(imgs_batch,
                                              input_buffer.data(),
                                              org_width.data(),
                                              org_height.data())) {
                return -1;
            }
            auto im_tensor = _main_predictor->GetInputTensor("image");
            im_tensor->Reshape({ batch_size, channels,
                                 eval_height, eval_width });
            im_tensor->copy_from_cpu(input_buffer.data());
W
wuzewu 已提交
284

285 286 287 288 289 290
            auto t1 = std::chrono::high_resolution_clock::now();
            _main_predictor->ZeroCopyRun();
            auto t2 = std::chrono::high_resolution_clock::now();
            auto duration = duration_cast<std::chrono::microseconds>
                            (t2 - t1).count();
            std::cout << "runtime = " << duration << std::endl;
W
wuzewu 已提交
291

292 293 294 295 296
            auto output_names = _main_predictor->GetOutputNames();
            auto output_t = _main_predictor->GetOutputTensor(
                                              output_names[0]);
            std::vector<float> out_data;
            std::vector<int> output_shape = output_t->shape();
W
wuzewu 已提交
297

298 299 300 301 302 303 304
            int out_num = 1;
            std::cout << "size of outputs[" << 0 << "]: (";
            for (int j = 0; j < output_shape.size(); ++j) {
                out_num *= output_shape[j];
                std::cout << output_shape[j] << ",";
            }
            std::cout << ")" << std::endl;
W
wuzewu 已提交
305

306 307 308 309 310 311 312
            out_data.resize(out_num);
            output_t->copy_to_cpu(out_data.data());
            for (int i = 0; i < batch_size; ++i) {
                float* out_addr = out_data.data()
                               + (out_num / batch_size) * i;
                output_mask(imgs_batch[i], out_addr, out_num / batch_size,
                            &org_height[i], &org_width[i]);
W
wuzewu 已提交
313 314
            }
        }
315 316 317
        return 0;
    }
}  // namespace PaddleSolution