train_quant.py 14.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

import sys
import argparse
import pprint
import random
import shutil
import functools

import paddle
import numpy as np
import paddle.fluid as fluid

from utils.config import cfg
from utils.timer import Timer, calculate_eta
from metrics import ConfusionMatrix
from reader import SegDataset
from models.model_builder import build_model
from models.model_builder import ModelPhase
from models.model_builder import parse_shape_from_file
from eval_quant import evaluate
from vis import visualize
from utils import dist_utils
from train import save_vars, save_checkpoint, load_checkpoint, update_best_model, print_info

from paddleslim.quant import quant_aware


def parse_args():
    parser = argparse.ArgumentParser(description='PaddleSeg training')
    parser.add_argument(
        '--cfg',
        dest='cfg_file',
        help='Config file for training (and optionally testing)',
        default=None,
        type=str)
    parser.add_argument(
        '--use_gpu',
        dest='use_gpu',
        help='Use gpu or cpu',
        action='store_true',
        default=False)
    parser.add_argument(
        '--use_mpio',
        dest='use_mpio',
        help='Use multiprocess I/O or not',
        action='store_true',
        default=False)
    parser.add_argument(
        '--log_steps',
        dest='log_steps',
        help='Display logging information at every log_steps',
        default=10,
        type=int)
    parser.add_argument(
        '--debug',
        dest='debug',
        help='debug mode, display detail information of training',
        action='store_true')
    parser.add_argument(
        '--do_eval',
        dest='do_eval',
        help='Evaluation models result on every new checkpoint',
        action='store_true')
    parser.add_argument(
        'opts',
        help='See utils/config.py for all options',
        default=None,
        nargs=argparse.REMAINDER)
    parser.add_argument(
        '--enable_ce',
        dest='enable_ce',
        help='If set True, enable continuous evaluation job.'
        'This flag is only used for internal test.',
        action='store_true')
    parser.add_argument(
        "--not_quant_pattern",
        nargs='+',
        type=str,
        help=
        "Layers which name_scope contains string in not_quant_pattern will not be quantized"
    )

    return parser.parse_args()


def train_quant(cfg):
    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    if args.enable_ce:
        startup_prog.random_seed = 1000
        train_prog.random_seed = 1000
    drop_last = True

    dataset = SegDataset(
        file_list=cfg.DATASET.TRAIN_FILE_LIST,
        mode=ModelPhase.TRAIN,
        shuffle=True,
        data_dir=cfg.DATASET.DATA_DIR)

    def data_generator():
        if args.use_mpio:
            data_gen = dataset.multiprocess_generator(
                num_processes=cfg.DATALOADER.NUM_WORKERS,
                max_queue_size=cfg.DATALOADER.BUF_SIZE)
        else:
            data_gen = dataset.generator()

        batch_data = []
        for b in data_gen:
            batch_data.append(b)
            if len(batch_data) == (cfg.BATCH_SIZE // cfg.NUM_TRAINERS):
                for item in batch_data:
                    yield item[0], item[1], item[2]
                batch_data = []
        # If use sync batch norm strategy, drop last batch if number of samples
        # in batch_data is less then cfg.BATCH_SIZE to avoid NCCL hang issues
        if not cfg.TRAIN.SYNC_BATCH_NORM:
            for item in batch_data:
                yield item[0], item[1], item[2]

    # Get device environment
    # places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places()
    # place = places[0]
    gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0))
    place = fluid.CUDAPlace(gpu_id) if args.use_gpu else fluid.CPUPlace()
    places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places()

    # Get number of GPU
    dev_count = cfg.NUM_TRAINERS if cfg.NUM_TRAINERS > 1 else len(places)
    print_info("#Device count: {}".format(dev_count))

    # Make sure BATCH_SIZE can divided by GPU cards
    assert cfg.BATCH_SIZE % dev_count == 0, (
        'BATCH_SIZE:{} not divisble by number of GPUs:{}'.format(
            cfg.BATCH_SIZE, dev_count))
    # If use multi-gpu training mode, batch data will allocated to each GPU evenly
    batch_size_per_dev = cfg.BATCH_SIZE // dev_count
    print_info("batch_size_per_dev: {}".format(batch_size_per_dev))

    py_reader, avg_loss, lr, pred, grts, masks = build_model(
        train_prog, startup_prog, phase=ModelPhase.TRAIN)
    py_reader.decorate_sample_generator(
        data_generator, batch_size=batch_size_per_dev, drop_last=drop_last)

    exe = fluid.Executor(place)
    exe.run(startup_prog)

    exec_strategy = fluid.ExecutionStrategy()
    # Clear temporary variables every 100 iteration
    if args.use_gpu:
        exec_strategy.num_threads = fluid.core.get_cuda_device_count()
    exec_strategy.num_iteration_per_drop_scope = 100
    build_strategy = fluid.BuildStrategy()

    if cfg.NUM_TRAINERS > 1 and args.use_gpu:
        dist_utils.prepare_for_multi_process(exe, build_strategy, train_prog)
        exec_strategy.num_threads = 1

    # Resume training
    begin_epoch = cfg.SOLVER.BEGIN_EPOCH
    if cfg.TRAIN.RESUME_MODEL_DIR:
        begin_epoch = load_checkpoint(exe, train_prog)
    # Load pretrained model
    elif os.path.exists(cfg.TRAIN.PRETRAINED_MODEL_DIR):
        print_info('Pretrained model dir: ', cfg.TRAIN.PRETRAINED_MODEL_DIR)
        load_vars = []
        load_fail_vars = []

        def var_shape_matched(var, shape):
            """
            Check whehter persitable variable shape is match with current network
            """
            var_exist = os.path.exists(
                os.path.join(cfg.TRAIN.PRETRAINED_MODEL_DIR, var.name))
            if var_exist:
                var_shape = parse_shape_from_file(
                    os.path.join(cfg.TRAIN.PRETRAINED_MODEL_DIR, var.name))
                return var_shape == shape
            return False

        for x in train_prog.list_vars():
            if isinstance(x, fluid.framework.Parameter):
                shape = tuple(fluid.global_scope().find_var(
                    x.name).get_tensor().shape())
                if var_shape_matched(x, shape):
                    load_vars.append(x)
                else:
                    load_fail_vars.append(x)

        fluid.io.load_vars(
            exe, dirname=cfg.TRAIN.PRETRAINED_MODEL_DIR, vars=load_vars)
        for var in load_vars:
            print_info("Parameter[{}] loaded sucessfully!".format(var.name))
        for var in load_fail_vars:
            print_info(
                "Parameter[{}] don't exist or shape does not match current network, skip"
                " to load it.".format(var.name))
        print_info("{}/{} pretrained parameters loaded successfully!".format(
            len(load_vars),
            len(load_vars) + len(load_fail_vars)))
    else:
        print_info(
            'Pretrained model dir {} not exists, training from scratch...'.
            format(cfg.TRAIN.PRETRAINED_MODEL_DIR))

    fetch_list = [avg_loss.name, lr.name]
    if args.debug:
        # Fetch more variable info and use streaming confusion matrix to
        # calculate IoU results if in debug mode
        np.set_printoptions(
            precision=4, suppress=True, linewidth=160, floatmode="fixed")
        fetch_list.extend([pred.name, grts.name, masks.name])
        cm = ConfusionMatrix(cfg.DATASET.NUM_CLASSES, streaming=True)

    not_quant_pattern = []
    if args.not_quant_pattern:
        not_quant_pattern = args.not_quant_pattern
    config = {
        'weight_quantize_type': 'channel_wise_abs_max',
        'activation_quantize_type': 'moving_average_abs_max',
        'quantize_op_types': ['depthwise_conv2d', 'mul', 'conv2d'],
        'not_quant_pattern': not_quant_pattern
    }
    compiled_train_prog = quant_aware(train_prog, place, config, for_test=False)
    eval_prog = quant_aware(train_prog, place, config, for_test=True)
    build_strategy.fuse_all_reduce_ops = False
    build_strategy.sync_batch_norm = False
    compiled_train_prog = compiled_train_prog.with_data_parallel(
        loss_name=avg_loss.name,
        exec_strategy=exec_strategy,
        build_strategy=build_strategy)

    # trainer_id = int(os.getenv("PADDLE_TRAINER_ID", 0))
    # num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
    global_step = 0
    all_step = cfg.DATASET.TRAIN_TOTAL_IMAGES // cfg.BATCH_SIZE
    if cfg.DATASET.TRAIN_TOTAL_IMAGES % cfg.BATCH_SIZE and drop_last != True:
        all_step += 1
    all_step *= (cfg.SOLVER.NUM_EPOCHS - begin_epoch + 1)

    avg_loss = 0.0
    best_mIoU = 0.0

    timer = Timer()
    timer.start()
    if begin_epoch > cfg.SOLVER.NUM_EPOCHS:
        raise ValueError(
            ("begin epoch[{}] is larger than cfg.SOLVER.NUM_EPOCHS[{}]").format(
                begin_epoch, cfg.SOLVER.NUM_EPOCHS))

    if args.use_mpio:
        print_info("Use multiprocess reader")
    else:
        print_info("Use multi-thread reader")

    for epoch in range(begin_epoch, cfg.SOLVER.NUM_EPOCHS + 1):
        py_reader.start()
        while True:
            try:
                if args.debug:
                    # Print category IoU and accuracy to check whether the
                    # traning process is corresponed to expectation
                    loss, lr, pred, grts, masks = exe.run(
                        program=compiled_train_prog,
                        fetch_list=fetch_list,
                        return_numpy=True)
                    cm.calculate(pred, grts, masks)
                    avg_loss += np.mean(np.array(loss))
                    global_step += 1

                    if global_step % args.log_steps == 0:
                        speed = args.log_steps / timer.elapsed_time()
                        avg_loss /= args.log_steps
                        category_acc, mean_acc = cm.accuracy()
                        category_iou, mean_iou = cm.mean_iou()

                        print_info((
                            "epoch={} step={} lr={:.5f} loss={:.4f} acc={:.5f} mIoU={:.5f} step/sec={:.3f} | ETA {}"
                        ).format(epoch, global_step, lr[0], avg_loss, mean_acc,
                                 mean_iou, speed,
                                 calculate_eta(all_step - global_step, speed)))
                        print_info("Category IoU: ", category_iou)
                        print_info("Category Acc: ", category_acc)
                        sys.stdout.flush()
                        avg_loss = 0.0
                        cm.zero_matrix()
                        timer.restart()
                else:
                    # If not in debug mode, avoid unnessary log and calculate
                    loss, lr = exe.run(
                        program=compiled_train_prog,
                        fetch_list=fetch_list,
                        return_numpy=True)
                    avg_loss += np.mean(np.array(loss))
                    global_step += 1

                    if global_step % args.log_steps == 0 and cfg.TRAINER_ID == 0:
                        avg_loss /= args.log_steps
                        speed = args.log_steps / timer.elapsed_time()
                        print((
                            "epoch={} step={} lr={:.5f} loss={:.4f} step/sec={:.3f} | ETA {}"
                        ).format(epoch, global_step, lr[0], avg_loss, speed,
                                 calculate_eta(all_step - global_step, speed)))
                        sys.stdout.flush()
                        avg_loss = 0.0
                        timer.restart()

            except fluid.core.EOFException:
                py_reader.reset()
                break
            except Exception as e:
                print(e)

        if (epoch % cfg.TRAIN.SNAPSHOT_EPOCH == 0
                or epoch == cfg.SOLVER.NUM_EPOCHS) and cfg.TRAINER_ID == 0:
            ckpt_dir = save_checkpoint(exe, eval_prog, epoch)

            if args.do_eval:
                print("Evaluation start")
                _, mean_iou, _, mean_acc = evaluate(
                    cfg=cfg,
                    ckpt_dir=ckpt_dir,
                    use_gpu=args.use_gpu,
                    use_mpio=args.use_mpio,
                    not_quant_pattern=args.not_quant_pattern,
                    convert=False)

                if mean_iou > best_mIoU:
                    best_mIoU = mean_iou
                    update_best_model(ckpt_dir)
                    print_info("Save best model {} to {}, mIoU = {:.4f}".format(
                        ckpt_dir,
                        os.path.join(cfg.TRAIN.MODEL_SAVE_DIR, 'best_model'),
                        mean_iou))

    # save final model
    if cfg.TRAINER_ID == 0:
        save_checkpoint(exe, eval_prog, 'final')


def main(args):
    if args.cfg_file is not None:
        cfg.update_from_file(args.cfg_file)
    if args.opts:
        cfg.update_from_list(args.opts)
    if args.enable_ce:
        random.seed(0)
        np.random.seed(0)

    cfg.TRAINER_ID = int(os.getenv("PADDLE_TRAINER_ID", 0))
    cfg.NUM_TRAINERS = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))

    cfg.check_and_infer()
    print_info(pprint.pformat(cfg))
    train_quant(cfg)


if __name__ == '__main__':
    args = parse_args()
    if fluid.core.is_compiled_with_cuda() != True and args.use_gpu == True:
        print(
            "You can not set use_gpu = True in the model because you are using paddlepaddle-cpu."
        )
        print(
            "Please: 1. Install paddlepaddle-gpu to run your models on GPU or 2. Set use_gpu=False to run models on CPU."
        )
        sys.exit(1)
    main(args)