提交 0193ce28 编写于 作者: L Liufang Sang 提交者: Zeyu Chen

Add PaddleSlim quantization demo (#151)

* add quantization demo train.py

* add quantizatiom demo

* fix readme

* fix details

* fix details

* add last_conv name_scope

* fix config file in eval.sj

* remove train.sh eval.sh
上级 843e2a8b
......@@ -27,6 +27,7 @@ from models.libs.model_libs import separate_conv
from models.backbone.mobilenet_v2 import MobileNetV2 as mobilenet_backbone
from models.backbone.xception import Xception as xception_backbone
def encoder(input):
# 编码器配置,采用ASPP架构,pooling + 1x1_conv + 三个不同尺度的空洞卷积并行, concat后1x1conv
# ASPP_WITH_SEP_CONV:默认为真,使用depthwise可分离卷积,否则使用普通卷积
......@@ -47,8 +48,7 @@ def encoder(input):
with scope('encoder'):
channel = 256
with scope("image_pool"):
image_avg = fluid.layers.reduce_mean(
input, [2, 3], keep_dim=True)
image_avg = fluid.layers.reduce_mean(input, [2, 3], keep_dim=True)
image_avg = bn_relu(
conv(
image_avg,
......@@ -250,14 +250,15 @@ def deeplabv3p(img, num_classes):
regularization_coeff=0.0),
initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.01))
with scope('logit'):
logit = conv(
data,
num_classes,
1,
stride=1,
padding=0,
bias_attr=True,
param_attr=param_attr)
with fluid.name_scope('last_conv'):
logit = conv(
data,
num_classes,
1,
stride=1,
padding=0,
bias_attr=True,
param_attr=param_attr)
logit = fluid.layers.resize_bilinear(logit, img.shape[2:])
return logit
>运行该示例前请安装Paddle1.6或更高版本和PaddleSlim
# 分割模型量化压缩示例
## 概述
该示例使用PaddleSlim提供的[量化压缩API](https://paddlepaddle.github.io/PaddleSlim/api/quantization_api/)对分割模型进行压缩。
在阅读该示例前,建议您先了解以下内容:
- [分割模型的常规训练方法](../../docs/usage.md)
- [PaddleSlim使用文档](https://paddlepaddle.github.io/PaddleSlim/)
## 安装PaddleSlim
可按照[PaddleSlim使用文档](https://paddlepaddle.github.io/PaddleSlim/)中的步骤安装PaddleSlim。
## 训练
### 数据集
请按照分割库的教程下载数据集并放到对应位置。
### 下载训练好的分割模型
在分割库根目录下运行以下命令:
```bash
mkdir pretrain
cd pretrain
wget https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz
tar xf mobilenet_cityscapes.tgz
```
### 定义量化配置
config = {
'weight_quantize_type': 'channel_wise_abs_max',
'activation_quantize_type': 'moving_average_abs_max',
'quantize_op_types': ['depthwise_conv2d', 'mul', 'conv2d'],
'not_quant_pattern': ['last_conv']
}
如何配置以及含义请参考[PaddleSlim 量化API](https://paddlepaddle.github.io/PaddleSlim/api/quantization_api/)
### 插入量化反量化OP
使用[PaddleSlim quant_aware API](https://paddlepaddle.github.io/PaddleSlim/api/quantization_api/#quant_aware)在Program中插入量化和反量化OP。
```
compiled_train_prog = quant_aware(train_prog, place, config, for_test=False)
```
### 关闭一些训练策略
因为量化要对Program做修改,所以一些会修改Program的训练策略需要关闭。``sync_batch_norm`` 和量化多卡训练同时使用时会出错, 需要将其关闭。
```
build_strategy.fuse_all_reduce_ops = False
build_strategy.sync_batch_norm = False
```
### 开始训练
step1: 设置gpu卡
```
export CUDA_VISIBLE_DEVICES=0
```
step2: 将``pdseg``文件夹加到系统路径
分割库根目录下运行以下命令
```
export PYTHONPATH=$PYTHONPATH:./pdseg
```
step2: 开始训练
在分割库根目录下运行以下命令进行训练。
```
python -u ./slim/quantization/train_quant.py --log_steps 10 --not_quant_pattern last_conv --cfg configs/deeplabv3p_mobilenetv2_cityscapes.yaml --use_gpu --use_mpio --do_eval \
TRAIN.PRETRAINED_MODEL_DIR "./pretrain/mobilenet_cityscapes/" \
TRAIN.MODEL_SAVE_DIR "./snapshots/mobilenetv2_quant" \
MODEL.DEEPLAB.ENCODER_WITH_ASPP False \
MODEL.DEEPLAB.ENABLE_DECODER False \
TRAIN.SYNC_BATCH_NORM False \
SOLVER.LR 0.0001 \
TRAIN.SNAPSHOT_EPOCH 1 \
SOLVER.NUM_EPOCHS 30 \
BATCH_SIZE 16 \
```
### 训练时的模型结构
[PaddleSlim 量化API](https://paddlepaddle.github.io/PaddleSlim/api/quantization_api/)文档中介绍了``paddleslim.quant.quant_aware````paddleslim.quant.convert``两个接口。
``paddleslim.quant.quant_aware`` 作用是在网络中的conv2d、depthwise_conv2d、mul等算子的各个输入前插入连续的量化op和反量化op,并改变相应反向算子的某些输入。示例图如下:
<p align="center">
<img src="./images/TransformPass.png" height=400 width=520 hspace='10'/> <br />
<strong>图1:应用 paddleslim.quant.quant_aware 后的结果</strong>
</p>
### 边训练边测试
在脚本中边训练边测试得到的测试精度是基于图1中的网络结构进行的。
## 评估
### 最终评估模型
``paddleslim.quant.convert`` 主要用于改变Program中量化op和反量化op的顺序,即将类似图1中的量化op和反量化op顺序改变为图2中的布局。除此之外,``paddleslim.quant.convert`` 还会将`conv2d``depthwise_conv2d``mul`等算子参数变为量化后的int8_t范围内的值(但数据类型仍为float32),示例如图2:
<p align="center">
<img src="./images/FreezePass.png" height=400 width=420 hspace='10'/> <br />
<strong>图2:paddleslim.quant.convert 后的结果</strong>
</p>
所以在调用 ``paddleslim.quant.convert`` 之后,才得到最终的量化模型。此模型可使用PaddleLite进行加载预测,可参见教程[Paddle-Lite如何加载运行量化模型](https://github.com/PaddlePaddle/Paddle-Lite/wiki/model_quantization)
### 评估脚本
使用脚本[slim/quantization/eval_quant.py](./eval_quant.py)进行评估。
- 定义配置。使用和训练脚本中一样的量化配置,以得到和量化训练时同样的模型。
- 使用 ``paddleslim.quant.quant_aware`` 插入量化和反量化op。
- 使用 ``paddleslim.quant.convert`` 改变op顺序,得到最终量化模型进行评估。
评估命令:
分割库根目录下运行
```
python -u ./slim/quantization/eval_quant.py --cfg configs/deeplabv3p_mobilenetv2_cityscapes.yaml --use_gpu --not_quant_pattern last_conv --use_mpio --convert \
TEST.TEST_MODEL "./snapshots/mobilenetv2_quant/best_model" \
MODEL.DEEPLAB.ENCODER_WITH_ASPP False \
MODEL.DEEPLAB.ENABLE_DECODER False \
TRAIN.SYNC_BATCH_NORM False \
BATCH_SIZE 16 \
```
## 量化结果
## FAQ
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import time
import argparse
import functools
import pprint
import cv2
import numpy as np
import paddle
import paddle.fluid as fluid
from utils.config import cfg
from utils.timer import Timer, calculate_eta
from models.model_builder import build_model
from models.model_builder import ModelPhase
from reader import SegDataset
from metrics import ConfusionMatrix
from paddleslim.quant import quant_aware, convert
def parse_args():
parser = argparse.ArgumentParser(description='PaddleSeg model evalution')
parser.add_argument(
'--cfg',
dest='cfg_file',
help='Config file for training (and optionally testing)',
default=None,
type=str)
parser.add_argument(
'--use_gpu',
dest='use_gpu',
help='Use gpu or cpu',
action='store_true',
default=False)
parser.add_argument(
'--use_mpio',
dest='use_mpio',
help='Use multiprocess IO or not',
action='store_true',
default=False)
parser.add_argument(
'opts',
help='See utils/config.py for all options',
default=None,
nargs=argparse.REMAINDER)
parser.add_argument(
'--convert',
dest='convert',
help='Convert or not',
action='store_true',
default=False)
parser.add_argument(
"--not_quant_pattern",
nargs='+',
type=str,
help=
"Layers which name_scope contains string in not_quant_pattern will not be quantized"
)
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
return parser.parse_args()
def evaluate(cfg, ckpt_dir=None, use_gpu=False, use_mpio=False, **kwargs):
np.set_printoptions(precision=5, suppress=True)
startup_prog = fluid.Program()
test_prog = fluid.Program()
dataset = SegDataset(
file_list=cfg.DATASET.VAL_FILE_LIST,
mode=ModelPhase.EVAL,
data_dir=cfg.DATASET.DATA_DIR)
def data_generator():
#TODO: check is batch reader compatitable with Windows
if use_mpio:
data_gen = dataset.multiprocess_generator(
num_processes=cfg.DATALOADER.NUM_WORKERS,
max_queue_size=cfg.DATALOADER.BUF_SIZE)
else:
data_gen = dataset.generator()
for b in data_gen:
yield b[0], b[1], b[2]
py_reader, avg_loss, pred, grts, masks = build_model(
test_prog, startup_prog, phase=ModelPhase.EVAL)
py_reader.decorate_sample_generator(
data_generator, drop_last=False, batch_size=cfg.BATCH_SIZE)
# Get device environment
places = fluid.cuda_places() if use_gpu else fluid.cpu_places()
place = places[0]
dev_count = len(places)
print("#Device count: {}".format(dev_count))
exe = fluid.Executor(place)
exe.run(startup_prog)
test_prog = test_prog.clone(for_test=True)
not_quant_pattern_list = []
if kwargs['not_quant_pattern'] is not None:
not_quant_pattern_list = kwargs['not_quant_pattern']
config = {
'weight_quantize_type': 'channel_wise_abs_max',
'activation_quantize_type': 'moving_average_abs_max',
'quantize_op_types': ['depthwise_conv2d', 'mul', 'conv2d'],
'not_quant_pattern': not_quant_pattern_list
}
test_prog = quant_aware(test_prog, place, config, for_test=True)
ckpt_dir = cfg.TEST.TEST_MODEL if not ckpt_dir else ckpt_dir
if not os.path.exists(ckpt_dir):
raise ValueError('The TEST.TEST_MODEL {} is not found'.format(ckpt_dir))
if ckpt_dir is not None:
print('load test model:', ckpt_dir)
fluid.io.load_persistables(exe, ckpt_dir, main_program=test_prog)
if kwargs['convert']:
test_prog = convert(test_prog, place, config)
# Use streaming confusion matrix to calculate mean_iou
np.set_printoptions(
precision=4, suppress=True, linewidth=160, floatmode="fixed")
conf_mat = ConfusionMatrix(cfg.DATASET.NUM_CLASSES, streaming=True)
fetch_list = [avg_loss.name, pred.name, grts.name, masks.name]
num_images = 0
step = 0
all_step = cfg.DATASET.TEST_TOTAL_IMAGES // cfg.BATCH_SIZE + 1
timer = Timer()
timer.start()
py_reader.start()
while True:
try:
step += 1
loss, pred, grts, masks = exe.run(
test_prog, fetch_list=fetch_list, return_numpy=True)
loss = np.mean(np.array(loss))
num_images += pred.shape[0]
conf_mat.calculate(pred, grts, masks)
_, iou = conf_mat.mean_iou()
_, acc = conf_mat.accuracy()
speed = 1.0 / timer.elapsed_time()
print(
"[EVAL]step={} loss={:.5f} acc={:.4f} IoU={:.4f} step/sec={:.2f} | ETA {}"
.format(step, loss, acc, iou, speed,
calculate_eta(all_step - step, speed)))
timer.restart()
sys.stdout.flush()
except fluid.core.EOFException:
break
category_iou, avg_iou = conf_mat.mean_iou()
category_acc, avg_acc = conf_mat.accuracy()
print("[EVAL]#image={} acc={:.4f} IoU={:.4f}".format(
num_images, avg_acc, avg_iou))
print("[EVAL]Category IoU:", category_iou)
print("[EVAL]Category Acc:", category_acc)
print("[EVAL]Kappa:{:.4f}".format(conf_mat.kappa()))
return category_iou, avg_iou, category_acc, avg_acc
def main():
args = parse_args()
if args.cfg_file is not None:
cfg.update_from_file(args.cfg_file)
if args.opts:
cfg.update_from_list(args.opts)
cfg.check_and_infer()
print(pprint.pformat(cfg))
evaluate(cfg, **args.__dict__)
if __name__ == '__main__':
main()
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import argparse
import pprint
import random
import shutil
import functools
import paddle
import numpy as np
import paddle.fluid as fluid
from utils.config import cfg
from utils.timer import Timer, calculate_eta
from metrics import ConfusionMatrix
from reader import SegDataset
from models.model_builder import build_model
from models.model_builder import ModelPhase
from models.model_builder import parse_shape_from_file
from eval_quant import evaluate
from vis import visualize
from utils import dist_utils
from train import save_vars, save_checkpoint, load_checkpoint, update_best_model, print_info
from paddleslim.quant import quant_aware
def parse_args():
parser = argparse.ArgumentParser(description='PaddleSeg training')
parser.add_argument(
'--cfg',
dest='cfg_file',
help='Config file for training (and optionally testing)',
default=None,
type=str)
parser.add_argument(
'--use_gpu',
dest='use_gpu',
help='Use gpu or cpu',
action='store_true',
default=False)
parser.add_argument(
'--use_mpio',
dest='use_mpio',
help='Use multiprocess I/O or not',
action='store_true',
default=False)
parser.add_argument(
'--log_steps',
dest='log_steps',
help='Display logging information at every log_steps',
default=10,
type=int)
parser.add_argument(
'--debug',
dest='debug',
help='debug mode, display detail information of training',
action='store_true')
parser.add_argument(
'--do_eval',
dest='do_eval',
help='Evaluation models result on every new checkpoint',
action='store_true')
parser.add_argument(
'opts',
help='See utils/config.py for all options',
default=None,
nargs=argparse.REMAINDER)
parser.add_argument(
'--enable_ce',
dest='enable_ce',
help='If set True, enable continuous evaluation job.'
'This flag is only used for internal test.',
action='store_true')
parser.add_argument(
"--not_quant_pattern",
nargs='+',
type=str,
help=
"Layers which name_scope contains string in not_quant_pattern will not be quantized"
)
return parser.parse_args()
def train_quant(cfg):
startup_prog = fluid.Program()
train_prog = fluid.Program()
if args.enable_ce:
startup_prog.random_seed = 1000
train_prog.random_seed = 1000
drop_last = True
dataset = SegDataset(
file_list=cfg.DATASET.TRAIN_FILE_LIST,
mode=ModelPhase.TRAIN,
shuffle=True,
data_dir=cfg.DATASET.DATA_DIR)
def data_generator():
if args.use_mpio:
data_gen = dataset.multiprocess_generator(
num_processes=cfg.DATALOADER.NUM_WORKERS,
max_queue_size=cfg.DATALOADER.BUF_SIZE)
else:
data_gen = dataset.generator()
batch_data = []
for b in data_gen:
batch_data.append(b)
if len(batch_data) == (cfg.BATCH_SIZE // cfg.NUM_TRAINERS):
for item in batch_data:
yield item[0], item[1], item[2]
batch_data = []
# If use sync batch norm strategy, drop last batch if number of samples
# in batch_data is less then cfg.BATCH_SIZE to avoid NCCL hang issues
if not cfg.TRAIN.SYNC_BATCH_NORM:
for item in batch_data:
yield item[0], item[1], item[2]
# Get device environment
# places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places()
# place = places[0]
gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0))
place = fluid.CUDAPlace(gpu_id) if args.use_gpu else fluid.CPUPlace()
places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places()
# Get number of GPU
dev_count = cfg.NUM_TRAINERS if cfg.NUM_TRAINERS > 1 else len(places)
print_info("#Device count: {}".format(dev_count))
# Make sure BATCH_SIZE can divided by GPU cards
assert cfg.BATCH_SIZE % dev_count == 0, (
'BATCH_SIZE:{} not divisble by number of GPUs:{}'.format(
cfg.BATCH_SIZE, dev_count))
# If use multi-gpu training mode, batch data will allocated to each GPU evenly
batch_size_per_dev = cfg.BATCH_SIZE // dev_count
print_info("batch_size_per_dev: {}".format(batch_size_per_dev))
py_reader, avg_loss, lr, pred, grts, masks = build_model(
train_prog, startup_prog, phase=ModelPhase.TRAIN)
py_reader.decorate_sample_generator(
data_generator, batch_size=batch_size_per_dev, drop_last=drop_last)
exe = fluid.Executor(place)
exe.run(startup_prog)
exec_strategy = fluid.ExecutionStrategy()
# Clear temporary variables every 100 iteration
if args.use_gpu:
exec_strategy.num_threads = fluid.core.get_cuda_device_count()
exec_strategy.num_iteration_per_drop_scope = 100
build_strategy = fluid.BuildStrategy()
if cfg.NUM_TRAINERS > 1 and args.use_gpu:
dist_utils.prepare_for_multi_process(exe, build_strategy, train_prog)
exec_strategy.num_threads = 1
# Resume training
begin_epoch = cfg.SOLVER.BEGIN_EPOCH
if cfg.TRAIN.RESUME_MODEL_DIR:
begin_epoch = load_checkpoint(exe, train_prog)
# Load pretrained model
elif os.path.exists(cfg.TRAIN.PRETRAINED_MODEL_DIR):
print_info('Pretrained model dir: ', cfg.TRAIN.PRETRAINED_MODEL_DIR)
load_vars = []
load_fail_vars = []
def var_shape_matched(var, shape):
"""
Check whehter persitable variable shape is match with current network
"""
var_exist = os.path.exists(
os.path.join(cfg.TRAIN.PRETRAINED_MODEL_DIR, var.name))
if var_exist:
var_shape = parse_shape_from_file(
os.path.join(cfg.TRAIN.PRETRAINED_MODEL_DIR, var.name))
return var_shape == shape
return False
for x in train_prog.list_vars():
if isinstance(x, fluid.framework.Parameter):
shape = tuple(fluid.global_scope().find_var(
x.name).get_tensor().shape())
if var_shape_matched(x, shape):
load_vars.append(x)
else:
load_fail_vars.append(x)
fluid.io.load_vars(
exe, dirname=cfg.TRAIN.PRETRAINED_MODEL_DIR, vars=load_vars)
for var in load_vars:
print_info("Parameter[{}] loaded sucessfully!".format(var.name))
for var in load_fail_vars:
print_info(
"Parameter[{}] don't exist or shape does not match current network, skip"
" to load it.".format(var.name))
print_info("{}/{} pretrained parameters loaded successfully!".format(
len(load_vars),
len(load_vars) + len(load_fail_vars)))
else:
print_info(
'Pretrained model dir {} not exists, training from scratch...'.
format(cfg.TRAIN.PRETRAINED_MODEL_DIR))
fetch_list = [avg_loss.name, lr.name]
if args.debug:
# Fetch more variable info and use streaming confusion matrix to
# calculate IoU results if in debug mode
np.set_printoptions(
precision=4, suppress=True, linewidth=160, floatmode="fixed")
fetch_list.extend([pred.name, grts.name, masks.name])
cm = ConfusionMatrix(cfg.DATASET.NUM_CLASSES, streaming=True)
not_quant_pattern = []
if args.not_quant_pattern:
not_quant_pattern = args.not_quant_pattern
config = {
'weight_quantize_type': 'channel_wise_abs_max',
'activation_quantize_type': 'moving_average_abs_max',
'quantize_op_types': ['depthwise_conv2d', 'mul', 'conv2d'],
'not_quant_pattern': not_quant_pattern
}
compiled_train_prog = quant_aware(train_prog, place, config, for_test=False)
eval_prog = quant_aware(train_prog, place, config, for_test=True)
build_strategy.fuse_all_reduce_ops = False
build_strategy.sync_batch_norm = False
compiled_train_prog = compiled_train_prog.with_data_parallel(
loss_name=avg_loss.name,
exec_strategy=exec_strategy,
build_strategy=build_strategy)
# trainer_id = int(os.getenv("PADDLE_TRAINER_ID", 0))
# num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
global_step = 0
all_step = cfg.DATASET.TRAIN_TOTAL_IMAGES // cfg.BATCH_SIZE
if cfg.DATASET.TRAIN_TOTAL_IMAGES % cfg.BATCH_SIZE and drop_last != True:
all_step += 1
all_step *= (cfg.SOLVER.NUM_EPOCHS - begin_epoch + 1)
avg_loss = 0.0
best_mIoU = 0.0
timer = Timer()
timer.start()
if begin_epoch > cfg.SOLVER.NUM_EPOCHS:
raise ValueError(
("begin epoch[{}] is larger than cfg.SOLVER.NUM_EPOCHS[{}]").format(
begin_epoch, cfg.SOLVER.NUM_EPOCHS))
if args.use_mpio:
print_info("Use multiprocess reader")
else:
print_info("Use multi-thread reader")
for epoch in range(begin_epoch, cfg.SOLVER.NUM_EPOCHS + 1):
py_reader.start()
while True:
try:
if args.debug:
# Print category IoU and accuracy to check whether the
# traning process is corresponed to expectation
loss, lr, pred, grts, masks = exe.run(
program=compiled_train_prog,
fetch_list=fetch_list,
return_numpy=True)
cm.calculate(pred, grts, masks)
avg_loss += np.mean(np.array(loss))
global_step += 1
if global_step % args.log_steps == 0:
speed = args.log_steps / timer.elapsed_time()
avg_loss /= args.log_steps
category_acc, mean_acc = cm.accuracy()
category_iou, mean_iou = cm.mean_iou()
print_info((
"epoch={} step={} lr={:.5f} loss={:.4f} acc={:.5f} mIoU={:.5f} step/sec={:.3f} | ETA {}"
).format(epoch, global_step, lr[0], avg_loss, mean_acc,
mean_iou, speed,
calculate_eta(all_step - global_step, speed)))
print_info("Category IoU: ", category_iou)
print_info("Category Acc: ", category_acc)
sys.stdout.flush()
avg_loss = 0.0
cm.zero_matrix()
timer.restart()
else:
# If not in debug mode, avoid unnessary log and calculate
loss, lr = exe.run(
program=compiled_train_prog,
fetch_list=fetch_list,
return_numpy=True)
avg_loss += np.mean(np.array(loss))
global_step += 1
if global_step % args.log_steps == 0 and cfg.TRAINER_ID == 0:
avg_loss /= args.log_steps
speed = args.log_steps / timer.elapsed_time()
print((
"epoch={} step={} lr={:.5f} loss={:.4f} step/sec={:.3f} | ETA {}"
).format(epoch, global_step, lr[0], avg_loss, speed,
calculate_eta(all_step - global_step, speed)))
sys.stdout.flush()
avg_loss = 0.0
timer.restart()
except fluid.core.EOFException:
py_reader.reset()
break
except Exception as e:
print(e)
if (epoch % cfg.TRAIN.SNAPSHOT_EPOCH == 0
or epoch == cfg.SOLVER.NUM_EPOCHS) and cfg.TRAINER_ID == 0:
ckpt_dir = save_checkpoint(exe, eval_prog, epoch)
if args.do_eval:
print("Evaluation start")
_, mean_iou, _, mean_acc = evaluate(
cfg=cfg,
ckpt_dir=ckpt_dir,
use_gpu=args.use_gpu,
use_mpio=args.use_mpio,
not_quant_pattern=args.not_quant_pattern,
convert=False)
if mean_iou > best_mIoU:
best_mIoU = mean_iou
update_best_model(ckpt_dir)
print_info("Save best model {} to {}, mIoU = {:.4f}".format(
ckpt_dir,
os.path.join(cfg.TRAIN.MODEL_SAVE_DIR, 'best_model'),
mean_iou))
# save final model
if cfg.TRAINER_ID == 0:
save_checkpoint(exe, eval_prog, 'final')
def main(args):
if args.cfg_file is not None:
cfg.update_from_file(args.cfg_file)
if args.opts:
cfg.update_from_list(args.opts)
if args.enable_ce:
random.seed(0)
np.random.seed(0)
cfg.TRAINER_ID = int(os.getenv("PADDLE_TRAINER_ID", 0))
cfg.NUM_TRAINERS = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
cfg.check_and_infer()
print_info(pprint.pformat(cfg))
train_quant(cfg)
if __name__ == '__main__':
args = parse_args()
if fluid.core.is_compiled_with_cuda() != True and args.use_gpu == True:
print(
"You can not set use_gpu = True in the model because you are using paddlepaddle-cpu."
)
print(
"Please: 1. Install paddlepaddle-gpu to run your models on GPU or 2. Set use_gpu=False to run models on CPU."
)
sys.exit(1)
main(args)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册