cityscape.yaml 1.8 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
EVAL_CROP_SIZE: (2049, 1025) # (width, height), for unpadding rangescaling and stepscaling
TRAIN_CROP_SIZE: (769, 769) # (width, height), for unpadding rangescaling and stepscaling
AUG:
    AUG_METHOD: "stepscaling" # choice unpadding rangescaling and stepscaling
    FIX_RESIZE_SIZE: (640, 640) # (width, height), for unpadding
    INF_RESIZE_VALUE: 500  # for rangescaling
    MAX_RESIZE_VALUE: 600  # for rangescaling
    MIN_RESIZE_VALUE: 400  # for rangescaling
    MAX_SCALE_FACTOR: 2.0  # for stepscaling
    MIN_SCALE_FACTOR: 0.5  # for stepscaling
    SCALE_STEP_SIZE: 0.25  # for stepscaling
    MIRROR: True
    FLIP: True
    FLIP_RATIO: 0.2
    RICH_CROP:
        ENABLE: False
        ASPECT_RATIO: 0.33
        BLUR: True
        BLUR_RATIO: 0.1
        MAX_ROTATION: 15
        MIN_AREA_RATIO: 0.5
        BRIGHTNESS_JITTER_RATIO: 0.5
        CONTRAST_JITTER_RATIO: 0.5
        SATURATION_JITTER_RATIO: 0.5
BATCH_SIZE: 16
MEAN: [0.5, 0.5, 0.5]
STD: [0.5, 0.5, 0.5]
DATASET:
    DATA_DIR: "./dataset/cityscapes/"
    IMAGE_TYPE: "rgb"  # choice rgb or rgba
    NUM_CLASSES: 19
    TEST_FILE_LIST: "dataset/cityscapes/val.list"
    TRAIN_FILE_LIST: "dataset/cityscapes/train.list"
    VAL_FILE_LIST: "dataset/cityscapes/val.list"
    IGNORE_INDEX: 255
FREEZE:
    MODEL_FILENAME: "model"
    PARAMS_FILENAME: "params"
MODEL:
    DEFAULT_NORM_TYPE: "bn"
    MODEL_NAME: "deeplabv3p"
    DEEPLAB:
        BACKBONE: "mobilenet"
        ASPP_WITH_SEP_CONV: True
        DECODER_USE_SEP_CONV: True
        ENCODER_WITH_ASPP: False
        ENABLE_DECODER: False
TEST:
    TEST_MODEL: "snapshots/cityscape_v5/final/"
TRAIN:
    MODEL_SAVE_DIR: "snapshots/cityscape_mbv2_kd_e100_1/"
L
LielinJiang 已提交
52
    PRETRAINED_MODEL_DIR: u"pretrained_model/mobilenet_cityscapes"
L
LielinJiang 已提交
53 54 55 56 57 58 59
    SNAPSHOT_EPOCH: 5
    SYNC_BATCH_NORM: True
SOLVER:
    LR: 0.001
    LR_POLICY: "poly"
    OPTIMIZER: "sgd"
    NUM_EPOCHS: 100