EVAL_CROP_SIZE: (2049, 1025) # (width, height), for unpadding rangescaling and stepscaling TRAIN_CROP_SIZE: (769, 769) # (width, height), for unpadding rangescaling and stepscaling AUG: AUG_METHOD: "stepscaling" # choice unpadding rangescaling and stepscaling FIX_RESIZE_SIZE: (640, 640) # (width, height), for unpadding INF_RESIZE_VALUE: 500 # for rangescaling MAX_RESIZE_VALUE: 600 # for rangescaling MIN_RESIZE_VALUE: 400 # for rangescaling MAX_SCALE_FACTOR: 2.0 # for stepscaling MIN_SCALE_FACTOR: 0.5 # for stepscaling SCALE_STEP_SIZE: 0.25 # for stepscaling MIRROR: True FLIP: True FLIP_RATIO: 0.2 RICH_CROP: ENABLE: False ASPECT_RATIO: 0.33 BLUR: True BLUR_RATIO: 0.1 MAX_ROTATION: 15 MIN_AREA_RATIO: 0.5 BRIGHTNESS_JITTER_RATIO: 0.5 CONTRAST_JITTER_RATIO: 0.5 SATURATION_JITTER_RATIO: 0.5 BATCH_SIZE: 16 MEAN: [0.5, 0.5, 0.5] STD: [0.5, 0.5, 0.5] DATASET: DATA_DIR: "./dataset/cityscapes/" IMAGE_TYPE: "rgb" # choice rgb or rgba NUM_CLASSES: 19 TEST_FILE_LIST: "dataset/cityscapes/val.list" TRAIN_FILE_LIST: "dataset/cityscapes/train.list" VAL_FILE_LIST: "dataset/cityscapes/val.list" IGNORE_INDEX: 255 FREEZE: MODEL_FILENAME: "model" PARAMS_FILENAME: "params" MODEL: DEFAULT_NORM_TYPE: "bn" MODEL_NAME: "deeplabv3p" DEEPLAB: BACKBONE: "mobilenet" ASPP_WITH_SEP_CONV: True DECODER_USE_SEP_CONV: True ENCODER_WITH_ASPP: False ENABLE_DECODER: False TEST: TEST_MODEL: "snapshots/cityscape_v5/final/" TRAIN: MODEL_SAVE_DIR: "snapshots/cityscape_mbv2_kd_e100_1/" PRETRAINED_MODEL_DIR: u"pretrained_model/mobilenet_cityscapes" SNAPSHOT_EPOCH: 5 SYNC_BATCH_NORM: True SOLVER: LR: 0.001 LR_POLICY: "poly" OPTIMIZER: "sgd" NUM_EPOCHS: 100