hrnet.py 8.7 KB
Newer Older
W
wuyefeilin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr

from utils.config import cfg


def conv_bn_layer(input, filter_size, num_filters, stride=1, padding=1, num_groups=1, if_act=True, name=None):
    conv = fluid.layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
        stride=stride,
        padding=(filter_size - 1) // 2,
        groups=num_groups,
        act=None,
        param_attr=ParamAttr(initializer=MSRA(), name=name + '_weights'),
        bias_attr=False)
    bn_name = name + '_bn'
    bn = fluid.layers.batch_norm(input=conv,
                                 param_attr=ParamAttr(name=bn_name + "_scale",
                                                      initializer=fluid.initializer.Constant(1.0)),
                                 bias_attr=ParamAttr(name=bn_name + "_offset",
                                                     initializer=fluid.initializer.Constant(0.0)),
                                 moving_mean_name=bn_name + '_mean',
                                 moving_variance_name=bn_name + '_variance')
    if if_act:
        bn = fluid.layers.relu(bn)
    return bn

def basic_block(input, num_filters, stride=1, downsample=False, name=None):
    residual = input
    conv = conv_bn_layer(input=input, filter_size=3, num_filters=num_filters, stride=stride, name=name + '_conv1')
    conv = conv_bn_layer(input=conv, filter_size=3, num_filters=num_filters, if_act=False, name=name + '_conv2')
    if downsample:
        residual = conv_bn_layer(input=input, filter_size=1, num_filters=num_filters, if_act=False,
                                      name=name + '_downsample')
    return fluid.layers.elementwise_add(x=residual, y=conv, act='relu')

def bottleneck_block(input, num_filters, stride=1, downsample=False, name=None):
    residual = input
    conv = conv_bn_layer(input=input, filter_size=1, num_filters=num_filters, name=name + '_conv1')
    conv = conv_bn_layer(input=conv, filter_size=3, num_filters=num_filters, stride=stride, name=name + '_conv2')
    conv = conv_bn_layer(input=conv, filter_size=1, num_filters=num_filters * 4, if_act=False,
                              name=name + '_conv3')
    if downsample:
        residual = conv_bn_layer(input=input, filter_size=1, num_filters=num_filters * 4, if_act=False,
                                      name=name + '_downsample')
    return fluid.layers.elementwise_add(x=residual, y=conv, act='relu')

def fuse_layers(x, channels, multi_scale_output=True, name=None):
    out = []
    for i in range(len(channels) if multi_scale_output else 1):
        residual = x[i]
        shape = residual.shape
        width = shape[-1]
        height = shape[-2]
        for j in range(len(channels)):
            if j > i:
                y = conv_bn_layer(x[j], filter_size=1, num_filters=channels[i], if_act=False,
                                       name=name + '_layer_' + str(i + 1) + '_' + str(j + 1))
                y = fluid.layers.resize_bilinear(input=y, out_shape=[height, width])
                residual = fluid.layers.elementwise_add(x=residual, y=y, act=None)
            elif j < i:
                y = x[j]
                for k in range(i - j):
                    if k == i - j - 1:
                        y = conv_bn_layer(y, filter_size=3, num_filters=channels[i], stride=2, if_act=False,
                                               name=name + '_layer_' + str(i + 1) + '_' + str(j + 1) + '_' + str(k + 1))
                    else:
                        y = conv_bn_layer(y, filter_size=3, num_filters=channels[j], stride=2,
                                               name=name + '_layer_' + str(i + 1) + '_' + str(j + 1) + '_' + str(k + 1))
                residual = fluid.layers.elementwise_add(x=residual, y=y, act=None)

        residual = fluid.layers.relu(residual)
        out.append(residual)
    return out

def branches(x, block_num, channels, name=None):
    out = []
    for i in range(len(channels)):
        residual = x[i]
        for j in range(block_num):
            residual = basic_block(residual, channels[i],
                                        name=name + '_branch_layer_' + str(i + 1) + '_' + str(j + 1))
        out.append(residual)
    return out

def high_resolution_module(x, channels, multi_scale_output=True, name=None):
    residual = branches(x, 4, channels, name=name)
    out = fuse_layers(residual, channels, multi_scale_output=multi_scale_output, name=name)
    return out

def transition_layer(x, in_channels, out_channels, name=None):
    num_in = len(in_channels)
    num_out = len(out_channels)
    out = []
    for i in range(num_out):
        if i < num_in:
            if in_channels[i] != out_channels[i]:
                residual = conv_bn_layer(x[i], filter_size=3, num_filters=out_channels[i],
                                              name=name + '_layer_' + str(i + 1))
                out.append(residual)
            else:
                out.append(x[i])
        else:
            residual = conv_bn_layer(x[-1], filter_size=3, num_filters=out_channels[i], stride=2,
                                          name=name + '_layer_' + str(i + 1))
            out.append(residual)
    return out

def stage(x, num_modules, channels, multi_scale_output=True, name=None):
    out = x
    for i in range(num_modules):
        if i == num_modules - 1 and multi_scale_output == False:
            out = high_resolution_module(out, channels, multi_scale_output=False, name=name + '_' + str(i + 1))
        else:
            out = high_resolution_module(out, channels, name=name + '_' + str(i + 1))

    return out

def layer1(input, name=None):
    conv = input
    for i in range(4):
        conv = bottleneck_block(conv, num_filters=64, downsample=True if i == 0 else False,
                                     name=name + '_' + str(i + 1))
    return conv

W
wuyefeilin 已提交
149
def high_resolution_net(input, num_classes):
W
wuyefeilin 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    
    channels_2 = cfg.MODEL.HRNET.STAGE2.NUM_CHANNELS
    channels_3 = cfg.MODEL.HRNET.STAGE3.NUM_CHANNELS
    channels_4 = cfg.MODEL.HRNET.STAGE4.NUM_CHANNELS
    
    num_modules_2 = cfg.MODEL.HRNET.STAGE2.NUM_MODULES
    num_modules_3 = cfg.MODEL.HRNET.STAGE3.NUM_MODULES
    num_modules_4 = cfg.MODEL.HRNET.STAGE4.NUM_MODULES

    x = conv_bn_layer(input=input, filter_size=3, num_filters=64, stride=2, if_act=True, name='layer1_1')
    x = conv_bn_layer(input=x, filter_size=3, num_filters=64, stride=2, if_act=True, name='layer1_2')

    la1 = layer1(x, name='layer2')
    tr1 = transition_layer([la1], [256], channels_2, name='tr1')
    st2 = stage(tr1, num_modules_2, channels_2, name='st2')
    tr2 = transition_layer(st2, channels_2, channels_3, name='tr2')
    st3 = stage(tr2, num_modules_3, channels_3, name='st3')
    tr3 = transition_layer(st3, channels_3, channels_4, name='tr3')
    st4 = stage(tr3, num_modules_4, channels_4, name='st4')

    # upsample
    shape = st4[0].shape
    height, width = shape[-2], shape[-1]
    st4[1] = fluid.layers.resize_bilinear(
        st4[1], out_shape=[height, width])
    st4[2] = fluid.layers.resize_bilinear(
        st4[2], out_shape=[height, width])
    st4[3] = fluid.layers.resize_bilinear(
        st4[3], out_shape=[height, width])

    out = fluid.layers.concat(st4, axis=1)
    last_channels = sum(channels_4)

    out = conv_bn_layer(input=out, filter_size=1, num_filters=last_channels, stride=1, if_act=True, name='conv-2')
    out= fluid.layers.conv2d(
        input=out,
        num_filters=num_classes,
        filter_size=1,
        stride=1,
        padding=0,
        act=None,
        param_attr=ParamAttr(initializer=MSRA(), name='conv-1_weights'),
        bias_attr=False)

    out = fluid.layers.resize_bilinear(out, input.shape[2:])


    return out


def hrnet(input, num_classes):
W
wuyefeilin 已提交
201
    logit = high_resolution_net(input, num_classes)
W
wuyefeilin 已提交
202 203 204 205 206 207 208
    return logit

if __name__ == '__main__':
    image_shape = [3, 769, 769]
    image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
    logit = hrnet(image, 4)
    print("logit:", logit.shape)