ops.py 5.4 KB
Newer Older
W
wuyefeilin 已提交
1
# coding: utf8
2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
L
LutaoChu 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import cv2
import math
import numpy as np
from PIL import Image, ImageEnhance


22 23 24 25 26 27
def normalize(im, min_value, max_value, mean, std):
    # Rescaling (min-max normalization)
    range_value = [max_value[i] - min_value[i] for i in range(len(max_value))]
    im = (im.astype(np.float32, copy=False) - min_value) / range_value

    # Standardization (Z-score Normalization)
L
LutaoChu 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    im -= mean
    im /= std
    return im


def permute(im, to_bgr=False):
    im = np.swapaxes(im, 1, 2)
    im = np.swapaxes(im, 1, 0)
    if to_bgr:
        im = im[[2, 1, 0], :, :]
    return im


def _resize(im, shape):
    return cv2.resize(im, shape)


def resize_short(im, short_size=224):
    percent = float(short_size) / min(im.shape[0], im.shape[1])
    resized_width = int(round(im.shape[1] * percent))
    resized_height = int(round(im.shape[0] * percent))
    im = _resize(im, shape=(resized_width, resized_height))
    return im


def resize_long(im, long_size=224, interpolation=cv2.INTER_LINEAR):
    value = max(im.shape[0], im.shape[1])
    scale = float(long_size) / float(value)
    im = cv2.resize(im, (0, 0), fx=scale, fy=scale, interpolation=interpolation)
    return im


def random_crop(im,
                crop_size=224,
                lower_scale=0.08,
                lower_ratio=3. / 4,
                upper_ratio=4. / 3):
    scale = [lower_scale, 1.0]
    ratio = [lower_ratio, upper_ratio]
    aspect_ratio = math.sqrt(np.random.uniform(*ratio))
    w = 1. * aspect_ratio
    h = 1. / aspect_ratio
    bound = min((float(im.shape[0]) / im.shape[1]) / (h**2),
                (float(im.shape[1]) / im.shape[0]) / (w**2))
    scale_max = min(scale[1], bound)
    scale_min = min(scale[0], bound)
    target_area = im.shape[0] * im.shape[1] * np.random.uniform(
        scale_min, scale_max)
    target_size = math.sqrt(target_area)
    w = int(target_size * w)
    h = int(target_size * h)
    i = np.random.randint(0, im.shape[0] - h + 1)
    j = np.random.randint(0, im.shape[1] - w + 1)
    im = im[i:i + h, j:j + w, :]
    im = _resize(im, shape=(crop_size, crop_size))
    return im


def center_crop(im, crop_size=224):
    height, width = im.shape[:2]
    w_start = (width - crop_size) // 2
    h_start = (height - crop_size) // 2
    w_end = w_start + crop_size
    h_end = h_start + crop_size
    im = im[h_start:h_end, w_start:w_end, :]
    return im


def horizontal_flip(im):
    if len(im.shape) == 3:
        im = im[:, ::-1, :]
    elif len(im.shape) == 2:
        im = im[:, ::-1]
    return im


def vertical_flip(im):
    if len(im.shape) == 3:
        im = im[::-1, :, :]
    elif len(im.shape) == 2:
        im = im[::-1, :]
    return im


def bgr2rgb(im):
    return im[:, :, ::-1]


def brightness(im, brightness_lower, brightness_upper):
    brightness_delta = np.random.uniform(brightness_lower, brightness_upper)
    im = ImageEnhance.Brightness(im).enhance(brightness_delta)
    return im


def contrast(im, contrast_lower, contrast_upper):
    contrast_delta = np.random.uniform(contrast_lower, contrast_upper)
    im = ImageEnhance.Contrast(im).enhance(contrast_delta)
    return im


def saturation(im, saturation_lower, saturation_upper):
    saturation_delta = np.random.uniform(saturation_lower, saturation_upper)
    im = ImageEnhance.Color(im).enhance(saturation_delta)
    return im


def hue(im, hue_lower, hue_upper):
    hue_delta = np.random.uniform(hue_lower, hue_upper)
    im = np.array(im.convert('HSV'))
    im[:, :, 0] = im[:, :, 0] + hue_delta
    im = Image.fromarray(im, mode='HSV').convert('RGB')
    return im


def rotate(im, rotate_lower, rotate_upper):
    rotate_delta = np.random.uniform(rotate_lower, rotate_upper)
    im = im.rotate(int(rotate_delta))
    return im


def resize_padding(im, max_side_len=2400):
    '''
    resize image to a size multiple of 32 which is required by the network
    :param im: the resized image
    :param max_side_len: limit of max image size to avoid out of memory in gpu
    :return: the resized image and the resize ratio
    '''
    h, w, _ = im.shape

    resize_w = w
    resize_h = h

    # limit the max side
    if max(resize_h, resize_w) > max_side_len:
        ratio = float(
            max_side_len) / resize_h if resize_h > resize_w else float(
                max_side_len) / resize_w
    else:
        ratio = 1.
    resize_h = int(resize_h * ratio)
    resize_w = int(resize_w * ratio)

    resize_h = resize_h if resize_h % 32 == 0 else (resize_h // 32 - 1) * 32
    resize_w = resize_w if resize_w % 32 == 0 else (resize_w // 32 - 1) * 32
    resize_h = max(32, resize_h)
    resize_w = max(32, resize_w)
    im = cv2.resize(im, (int(resize_w), int(resize_h)))
    #im = cv2.resize(im, (512, 512))
    ratio_h = resize_h / float(h)
    ratio_w = resize_w / float(w)
    _ratio = np.array([ratio_h, ratio_w]).reshape(-1, 2)
    return im, _ratio