ops.py 5.1 KB
Newer Older
L
LutaoChu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import cv2
import math
import numpy as np
from PIL import Image, ImageEnhance


def normalize(im, mean, std):
    im = im.astype(np.float32, copy=False) / 255.0
    im -= mean
    im /= std
    return im


def permute(im, to_bgr=False):
    im = np.swapaxes(im, 1, 2)
    im = np.swapaxes(im, 1, 0)
    if to_bgr:
        im = im[[2, 1, 0], :, :]
    return im


def _resize(im, shape):
    return cv2.resize(im, shape)


def resize_short(im, short_size=224):
    percent = float(short_size) / min(im.shape[0], im.shape[1])
    resized_width = int(round(im.shape[1] * percent))
    resized_height = int(round(im.shape[0] * percent))
    im = _resize(im, shape=(resized_width, resized_height))
    return im


def resize_long(im, long_size=224, interpolation=cv2.INTER_LINEAR):
    value = max(im.shape[0], im.shape[1])
    scale = float(long_size) / float(value)
    im = cv2.resize(im, (0, 0), fx=scale, fy=scale, interpolation=interpolation)
    return im


def random_crop(im,
                crop_size=224,
                lower_scale=0.08,
                lower_ratio=3. / 4,
                upper_ratio=4. / 3):
    scale = [lower_scale, 1.0]
    ratio = [lower_ratio, upper_ratio]
    aspect_ratio = math.sqrt(np.random.uniform(*ratio))
    w = 1. * aspect_ratio
    h = 1. / aspect_ratio
    bound = min((float(im.shape[0]) / im.shape[1]) / (h**2),
                (float(im.shape[1]) / im.shape[0]) / (w**2))
    scale_max = min(scale[1], bound)
    scale_min = min(scale[0], bound)
    target_area = im.shape[0] * im.shape[1] * np.random.uniform(
        scale_min, scale_max)
    target_size = math.sqrt(target_area)
    w = int(target_size * w)
    h = int(target_size * h)
    i = np.random.randint(0, im.shape[0] - h + 1)
    j = np.random.randint(0, im.shape[1] - w + 1)
    im = im[i:i + h, j:j + w, :]
    im = _resize(im, shape=(crop_size, crop_size))
    return im


def center_crop(im, crop_size=224):
    height, width = im.shape[:2]
    w_start = (width - crop_size) // 2
    h_start = (height - crop_size) // 2
    w_end = w_start + crop_size
    h_end = h_start + crop_size
    im = im[h_start:h_end, w_start:w_end, :]
    return im


def horizontal_flip(im):
    if len(im.shape) == 3:
        im = im[:, ::-1, :]
    elif len(im.shape) == 2:
        im = im[:, ::-1]
    return im


def vertical_flip(im):
    if len(im.shape) == 3:
        im = im[::-1, :, :]
    elif len(im.shape) == 2:
        im = im[::-1, :]
    return im


def bgr2rgb(im):
    return im[:, :, ::-1]


def brightness(im, brightness_lower, brightness_upper):
    brightness_delta = np.random.uniform(brightness_lower, brightness_upper)
    im = ImageEnhance.Brightness(im).enhance(brightness_delta)
    return im


def contrast(im, contrast_lower, contrast_upper):
    contrast_delta = np.random.uniform(contrast_lower, contrast_upper)
    im = ImageEnhance.Contrast(im).enhance(contrast_delta)
    return im


def saturation(im, saturation_lower, saturation_upper):
    saturation_delta = np.random.uniform(saturation_lower, saturation_upper)
    im = ImageEnhance.Color(im).enhance(saturation_delta)
    return im


def hue(im, hue_lower, hue_upper):
    hue_delta = np.random.uniform(hue_lower, hue_upper)
    im = np.array(im.convert('HSV'))
    im[:, :, 0] = im[:, :, 0] + hue_delta
    im = Image.fromarray(im, mode='HSV').convert('RGB')
    return im


def rotate(im, rotate_lower, rotate_upper):
    rotate_delta = np.random.uniform(rotate_lower, rotate_upper)
    im = im.rotate(int(rotate_delta))
    return im


def resize_padding(im, max_side_len=2400):
    '''
    resize image to a size multiple of 32 which is required by the network
    :param im: the resized image
    :param max_side_len: limit of max image size to avoid out of memory in gpu
    :return: the resized image and the resize ratio
    '''
    h, w, _ = im.shape

    resize_w = w
    resize_h = h

    # limit the max side
    if max(resize_h, resize_w) > max_side_len:
        ratio = float(
            max_side_len) / resize_h if resize_h > resize_w else float(
                max_side_len) / resize_w
    else:
        ratio = 1.
    resize_h = int(resize_h * ratio)
    resize_w = int(resize_w * ratio)

    resize_h = resize_h if resize_h % 32 == 0 else (resize_h // 32 - 1) * 32
    resize_w = resize_w if resize_w % 32 == 0 else (resize_w // 32 - 1) * 32
    resize_h = max(32, resize_h)
    resize_w = max(32, resize_w)
    im = cv2.resize(im, (int(resize_w), int(resize_h)))
    #im = cv2.resize(im, (512, 512))
    ratio_h = resize_h / float(h)
    ratio_w = resize_w / float(w)
    _ratio = np.array([ratio_h, ratio_w]).reshape(-1, 2)
    return im, _ratio