reader.py 13.0 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import sys
import os
import math
import random
import functools
import io
import time
import codecs

import numpy as np
import paddle
import paddle.fluid as fluid
import cv2

import data_aug as aug
from utils.config import cfg
from data_utils import GeneratorEnqueuer
from models.model_builder import ModelPhase


def cv2_imread(file_path, flag=cv2.IMREAD_COLOR):
    # resolve cv2.imread open Chinese file path issues on Windows Platform.
    return cv2.imdecode(np.fromfile(file_path, dtype=np.uint8), flag)


class SegDataset(object):
    def __init__(self,
                 file_list,
                 data_dir,
                 shuffle=False,
                 mode=ModelPhase.TRAIN):
        self.mode = mode
        self.shuffle = shuffle
        self.data_dir = data_dir

        # NOTE: Please ensure file list was save in UTF-8 coding format
        with codecs.open(file_list, 'r', 'utf-8') as flist:
            self.lines = [line.strip() for line in flist]
            if shuffle:
                np.random.shuffle(self.lines)

    def generator(self):
        if self.shuffle:
            np.random.shuffle(self.lines)
        for line in self.lines:
            yield self.process_image(line, self.data_dir, self.mode)

    def sharding_generator(self, pid=0, num_processes=1):
        """
        Use line id as shard key for multiprocess io
        It's a normal generator if pid=0, num_processes=1
        """
        for index, line in enumerate(self.lines):
            # Use index and pid to shard file list
            if index % num_processes == pid:
                yield self.process_image(line, self.data_dir, self.mode)

    def batch_reader(self, batch_size):
        br = self.batch(self.reader, batch_size)
        for batch in br:
            yield batch[0], batch[1], batch[2]

    def multiprocess_generator(self, max_queue_size=32, num_processes=8):
        # Re-shuffle file list
        if self.shuffle:
            np.random.shuffle(self.lines)
        # Create multiple sharding generators according to num_processes for multiple processes
        generators = []
        for pid in range(num_processes):
            generators.append(self.sharding_generator(pid, num_processes))

        try:
            enqueuer = GeneratorEnqueuer(generators)
            enqueuer.start(max_queue_size=max_queue_size, workers=num_processes)
            while True:
                generator_out = None
                while enqueuer.is_running():
                    if not enqueuer.queue.empty():
                        generator_out = enqueuer.queue.get(timeout=5)
                        break
                    else:
                        time.sleep(0.01)
                if generator_out is None:
                    break
                yield generator_out
        finally:
            if enqueuer is not None:
                enqueuer.stop()

    def batch(self, reader, batch_size, is_test=False, drop_last=False):
        def batch_reader(is_test=False, drop_last=drop_last):
            if is_test:
                imgs, img_names, valid_shapes, org_shapes = [], [], [], []
                for img, img_name, valid_shape, org_shape in reader():
                    imgs.append(img)
                    img_names.append(img_name)
                    valid_shapes.append(valid_shape)
                    org_shapes.append(org_shape)
                    if len(imgs) == batch_size:
                        yield np.array(imgs), img_names, np.array(
                            valid_shapes), np.array(org_shapes)
                        imgs, img_names, valid_shapes, org_shapes = [], [], [], []

                if not drop_last and len(imgs) > 0:
                    yield np.array(imgs), img_names, np.array(
                        valid_shapes), np.array(org_shapes)
            else:
                imgs, labs, ignore = [], [], []
                bs = 0
                for img, lab, ig in reader():
                    imgs.append(img)
                    labs.append(lab)
                    ignore.append(ig)
                    bs += 1
                    if bs == batch_size:
                        yield np.array(imgs), np.array(labs), np.array(ignore)
                        bs = 0
                        imgs, labs, ignore = [], [], []

                if not drop_last and bs > 0:
                    yield np.array(imgs), np.array(labs), np.array(ignore)

        return batch_reader(is_test, drop_last)

    def load_image(self, line, src_dir, mode=ModelPhase.TRAIN):
        # original image cv2.imread flag setting
        cv2_imread_flag = cv2.IMREAD_COLOR
        if cfg.DATASET.IMAGE_TYPE == "rgba":
            # If use RBGA 4 channel ImageType, use IMREAD_UNCHANGED flags to
            # reserver alpha channel
            cv2_imread_flag = cv2.IMREAD_UNCHANGED

        if mode == ModelPhase.TRAIN or mode == ModelPhase.EVAL:
            parts = line.strip().split(cfg.DATASET.SEPARATOR)
            if len(parts) != 2:
                raise Exception("File list format incorrect! It should be"
                                " image_name{}label_name\\n".format(
                                    cfg.DATASET.SEPARATOR))
            img_name, grt_name = parts[0], parts[1]
            img_path = os.path.join(src_dir, img_name)
            grt_path = os.path.join(src_dir, grt_name)

            img = cv2_imread(img_path, cv2_imread_flag)
            grt = cv2_imread(grt_path, cv2.IMREAD_GRAYSCALE)

            if img is None or grt is None:
                raise Exception(
                    "Empty image, src_dir: {}, img: {} & lab: {}".format(
                        src_dir, img_path, grt_path))

            img_height = img.shape[0]
            img_width = img.shape[1]
            grt_height = grt.shape[0]
            grt_width = grt.shape[1]

            if img_height != grt_height or img_width != grt_width:
                raise Exception(
                    "source img and label img must has the same size")

            if len(img.shape) < 3:
                img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

            img_channels = img.shape[2]
            if img_channels < 3:
                raise Exception(
                    "PaddleSeg only supports gray, rgb or rgba image")
            if img_channels != cfg.DATASET.DATA_DIM:
                raise Exception(
                    "Input image channel({}) is not match cfg.DATASET.DATA_DIM({}), img_name={}"
                    .format(img_channels, cfg.DATASET.DATADIM, img_name))
            if img_channels != len(cfg.MEAN):
                raise Exception(
                    "img name {}, img chns {} mean size {}, size unequal".
                    format(img_name, img_channels, len(cfg.MEAN)))
            if img_channels != len(cfg.STD):
                raise Exception(
                    "img name {}, img chns {} std size {}, size unequal".format(
                        img_name, img_channels, len(cfg.STD)))

        # visualization mode
        elif mode == ModelPhase.VISUAL:
            if cfg.DATASET.SEPARATOR in line:
                parts = line.strip().split(cfg.DATASET.SEPARATOR)
                img_name = parts[0]
            else:
                img_name = line.strip()

            img_path = os.path.join(src_dir, img_name)
            img = cv2_imread(img_path, cv2_imread_flag)

            if img is None:
                raise Exception("empty image, src_dir:{}, img: {}".format(
                    src_dir, img_name))

            # Convert grayscale image to BGR 3 channel image
            if len(img.shape) < 3:
                img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

            img_height = img.shape[0]
            img_width = img.shape[1]
            img_channels = img.shape[2]

            if img_channels < 3:
                raise Exception("this repo only recept gray, rgb or rgba image")
            if img_channels != cfg.DATASET.DATA_DIM:
                raise Exception("data dim must equal to image channels")
            if img_channels != len(cfg.MEAN):
                raise Exception(
                    "img name {}, img chns {} mean size {}, size unequal".
                    format(img_name, img_channels, len(cfg.MEAN)))
            if img_channels != len(cfg.STD):
                raise Exception(
                    "img name {}, img chns {} std size {}, size unequal".format(
                        img_name, img_channels, len(cfg.STD)))

            grt = None
            grt_name = None
        else:
            raise ValueError("mode error: {}".format(mode))

        return img, grt, img_name, grt_name

    def normalize_image(self, img):
        """ 像素归一化后减均值除方差 """
        img = img.transpose((2, 0, 1)).astype('float32') / 255.0
        img_mean = np.array(cfg.MEAN).reshape((len(cfg.MEAN), 1, 1))
        img_std = np.array(cfg.STD).reshape((len(cfg.STD), 1, 1))
        img -= img_mean
        img /= img_std

        return img

    def process_image(self, line, data_dir, mode):
        """ process_image """
        img, grt, img_name, grt_name = self.load_image(
            line, data_dir, mode=mode)
        if mode == ModelPhase.TRAIN:
            img, grt = aug.resize(img, grt, mode)
            if cfg.AUG.RICH_CROP.ENABLE:
                if cfg.AUG.RICH_CROP.BLUR:
                    if cfg.AUG.RICH_CROP.BLUR_RATIO <= 0:
                        n = 0
                    elif cfg.AUG.RICH_CROP.BLUR_RATIO >= 1:
                        n = 1
                    else:
                        n = int(1.0 / cfg.AUG.RICH_CROP.BLUR_RATIO)
                    if n > 0:
                        if np.random.randint(0, n) == 0:
                            radius = np.random.randint(3, 10)
                            if radius % 2 != 1:
                                radius = radius + 1
                            if radius > 9:
                                radius = 9
                            img = cv2.GaussianBlur(img, (radius, radius), 0, 0)

                img, grt = aug.random_rotation(
                    img,
                    grt,
                    rich_crop_max_rotation=cfg.AUG.RICH_CROP.MAX_ROTATION,
                    mean_value=cfg.MEAN)

                img, grt = aug.rand_scale_aspect(
                    img,
                    grt,
                    rich_crop_min_scale=cfg.AUG.RICH_CROP.MIN_AREA_RATIO,
                    rich_crop_aspect_ratio=cfg.AUG.RICH_CROP.ASPECT_RATIO)
                img = aug.hsv_color_jitter(
                    img,
                    brightness_jitter_ratio=cfg.AUG.RICH_CROP.
                    BRIGHTNESS_JITTER_RATIO,
                    saturation_jitter_ratio=cfg.AUG.RICH_CROP.
                    SATURATION_JITTER_RATIO,
                    contrast_jitter_ratio=cfg.AUG.RICH_CROP.
                    CONTRAST_JITTER_RATIO)
                if cfg.AUG.RICH_CROP.FLIP:
                    if cfg.AUG.RICH_CROP.FLIP_RATIO <= 0:
                        n = 0
                    elif cfg.AUG.RICH_CROP.FLIP_RATIO >= 1:
                        n = 1
                    else:
                        n = int(1.0 / cfg.AUG.RICH_CROP.FLIP_RATIO)
                    if n > 0:
                        if np.random.randint(0, n) == 0:
                            img = img[::-1, :, :]
                            grt = grt[::-1, :]

            if cfg.AUG.MIRROR:
                if np.random.randint(0, 2) == 1:
                    img = img[:, ::-1, :]
                    grt = grt[:, ::-1]

            img, grt = aug.rand_crop(img, grt, mode=mode)
        elif ModelPhase.is_eval(mode):
            img, grt = aug.resize(img, grt, mode=mode)
            img, grt = aug.rand_crop(img, grt, mode=mode)
        elif ModelPhase.is_visual(mode):
            org_shape = [img.shape[0], img.shape[1]]
            img, grt = aug.resize(img, grt, mode=mode)
            valid_shape = [img.shape[0], img.shape[1]]
            img, grt = aug.rand_crop(img, grt, mode=mode)
        else:
            raise ValueError("Dataset mode={} Error!".format(mode))

        # Normalize image
        img = self.normalize_image(img)

        if ModelPhase.is_train(mode) or ModelPhase.is_eval(mode):
            grt = np.expand_dims(np.array(grt).astype('int32'), axis=0)
            ignore = (grt != cfg.DATASET.IGNORE_INDEX).astype('int32')

        if ModelPhase.is_train(mode):
            return (img, grt, ignore)
        elif ModelPhase.is_eval(mode):
            return (img, grt, ignore)
        elif ModelPhase.is_visual(mode):
            return (img, img_name, valid_shape, org_shape)