Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
84108fc5
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
84108fc5
编写于
6月 23, 2020
作者:
O
overlordmax
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix bug
上级
a15f7df1
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
67 addition
and
46 deletion
+67
-46
doc/imgs/overview.png
doc/imgs/overview.png
+0
-0
models/rank/fibinet/README.md
models/rank/fibinet/README.md
+31
-27
models/rank/fibinet/config.yaml
models/rank/fibinet/config.yaml
+33
-18
models/rank/readme.md
models/rank/readme.md
+3
-1
未找到文件。
doc/imgs/overview.png
查看替换文件 @
a15f7df1
浏览文件 @
84108fc5
217.7 KB
|
W:
|
H:
212.4 KB
|
W:
|
H:
2-up
Swipe
Onion skin
models/rank/fibinet/README.md
浏览文件 @
84108fc5
...
@@ -30,6 +30,12 @@
...
@@ -30,6 +30,12 @@
(2)数值特征(连续特征)进行归一化处理
(2)数值特征(连续特征)进行归一化处理
执行run.sh生成训练集和测试集
```
sh run.sh
```
## 环境
## 环境
PaddlePaddle 1.7.2
PaddlePaddle 1.7.2
...
@@ -97,38 +103,36 @@ python -m paddlerec.run -m paddlerec.models.rank.fibinet
...
@@ -97,38 +103,36 @@ python -m paddlerec.run -m paddlerec.models.rank.fibinet
训练:
训练:
```
```
I0622 19:25:12.142271 344 parallel_executor.cc:440] The Program will be executed on CPU using ParallelExecutor, 1 cards are used, so 1 programs are executed in parallel.
Running SingleStartup.
I0622 19:25:12.673106 344 build_strategy.cc:365] SeqOnlyAllReduceOps:0, num_trainers:1
W0623 12:03:35.130075 509 device_context.cc:237] Please NOTE: device: 0, CUDA Capability: 70, Driver API Version: 9.2, Runtime API Version: 9.0
I0622 19:25:17.203287 344 parallel_executor.cc:307] Inplace strategy is enabled, when build_strategy.enable_inplace = True
W0623 12:03:35.134771 509 device_context.cc:245] device: 0, cuDNN Version: 7.3.
I0622 19:25:17.684131 344 parallel_executor.cc:375] Garbage collection strategy is enabled, when FLAGS_eager_delete_tensor_gb = 0
Running SingleRunner.
batch: 10, AUC: [0.52777778], BATCH_AUC: [0.52777778]
batch: 100, AUC: [0.6449976], BATCH_AUC: [0.69029814]
batch: 20, AUC: [0.51836735], BATCH_AUC: [0.45098039]
batch: 200, AUC: [0.6769844], BATCH_AUC: [0.70255003]
batch: 30, AUC: [0.30978261], BATCH_AUC: [0.23214286]
batch: 300, AUC: [0.67131597], BATCH_AUC: [0.68954499]
epoch 0 done, use time: 11.074166536331177
batch: 400, AUC: [0.68129822], BATCH_AUC: [0.70892718]
batch: 10, AUC: [0.44592593], BATCH_AUC: [0.74294671]
batch: 500, AUC: [0.68242937], BATCH_AUC: [0.69269376]
batch: 20, AUC: [0.52282609], BATCH_AUC: [0.83333333]
batch: 600, AUC: [0.68741928], BATCH_AUC: [0.72034578]
batch: 30, AUC: [0.5210356], BATCH_AUC: [0.91071429]
...
epoch 1 done, use time: 4.212069749832153
batch: 1400, AUC: [0.84607023], BATCH_AUC: [0.93358024]
batch: 10, AUC: [0.60075758], BATCH_AUC: [0.89184953]
batch: 1500, AUC: [0.84796116], BATCH_AUC: [0.95302841]
batch: 20, AUC: [0.64758769], BATCH_AUC: [1.]
batch: 1600, AUC: [0.84949111], BATCH_AUC: [0.92868531]
batch: 30, AUC: [0.68684476], BATCH_AUC: [1.]
batch: 1700, AUC: [0.85113661], BATCH_AUC: [0.95452616]
epoch 2 done, use time: 4.276938438415527
batch: 1800, AUC: [0.85260467], BATCH_AUC: [0.92847032]
batch: 10, AUC: [0.75172139], BATCH_AUC: [1.]
epoch 3 done, use time: 1618.1106688976288
batch: 20, AUC: [0.77915815], BATCH_AUC: [1.]
batch: 30, AUC: [0.81179181], BATCH_AUC: [1.]
epoch 3 done, use time: 4.278341770172119
PaddleRec Finish
```
```
预测
预测
```
```
load persistables from increment_model/3
load persistables from increment_model/3
batch: 20, AUC: [0.86578715], BATCH_AUC: [1.]
batch: 20, AUC: [0.85304064], BATCH_AUC: [0.94178556]
Infer phase2 of 3 done, use time: 13.813123941421509
batch: 40, AUC: [0.85304544], BATCH_AUC: [0.95207907]
load persistables from increment_model/1
batch: 60, AUC: [0.85303907], BATCH_AUC: [0.94782551]
batch: 20, AUC: [0.6480309], BATCH_AUC: [1.]
batch: 80, AUC: [0.85298773], BATCH_AUC: [0.93987691]
Infer phase2 of 1 done, use time: 13.001627922058105
...
PaddleRec Finish
batch: 1780, AUC: [0.866046], BATCH_AUC: [0.96424594]
batch: 1800, AUC: [0.86633785], BATCH_AUC: [0.96900967]
batch: 1820, AUC: [0.86662365], BATCH_AUC: [0.96759972]
```
```
models/rank/fibinet/config.yaml
浏览文件 @
84108fc5
...
@@ -18,21 +18,15 @@ workspace: "paddlerec.models.rank.fibinet"
...
@@ -18,21 +18,15 @@ workspace: "paddlerec.models.rank.fibinet"
# list of dataset
# list of dataset
dataset
:
dataset
:
-
name
:
dataloader_train
# name of dataset to distinguish different datasets
-
name
:
dataloader_train
# name of dataset to distinguish different datasets
batch_size
:
2
batch_size
:
1000
type
:
DataLoader
# or QueueDataset
type
:
DataLoader
# or QueueDataset
data_path
:
"
{workspace}/data/sample_data/train"
data_path
:
"
{workspace}/data/slot_test_data_full"
sparse_slots
:
"
click
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26"
dense_slots
:
"
dense_var:13"
-
name
:
dataset_train
# name of dataset to distinguish different datasets
batch_size
:
2
type
:
QueueDataset
# or DataLoader
data_path
:
"
{workspace}/data/sample_data/train"
sparse_slots
:
"
click
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26"
sparse_slots
:
"
click
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26"
dense_slots
:
"
dense_var:13"
dense_slots
:
"
dense_var:13"
-
name
:
dataset_infer
# name
-
name
:
dataset_infer
# name
batch_size
:
2
batch_size
:
1000
type
:
DataLoader
# or QueueDataset
type
:
DataLoader
# or QueueDataset
data_path
:
"
{workspace}/data/s
ample_data/train
"
data_path
:
"
{workspace}/data/s
lot_test_data_full
"
sparse_slots
:
"
click
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26"
sparse_slots
:
"
click
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26"
dense_slots
:
"
dense_var:13"
dense_slots
:
"
dense_var:13"
...
@@ -53,7 +47,7 @@ hyper_parameters:
...
@@ -53,7 +47,7 @@ hyper_parameters:
dropout_rate
:
0.5
dropout_rate
:
0.5
# select runner by name
# select runner by name
mode
:
[
single_
cpu_train
,
single_c
pu_infer
]
mode
:
[
single_
gpu_train
,
single_g
pu_infer
]
# config of each runner.
# config of each runner.
# runner is a kind of paddle training class, which wraps the train/infer process.
# runner is a kind of paddle training class, which wraps the train/infer process.
runner
:
runner
:
...
@@ -63,23 +57,44 @@ runner:
...
@@ -63,23 +57,44 @@ runner:
epochs
:
4
epochs
:
4
# device to run training or infer
# device to run training or infer
device
:
cpu
device
:
cpu
save_checkpoint_interval
:
2
# save model interval of epochs
save_checkpoint_interval
:
1
# save model interval of epochs
save_inference_interval
:
4
# save inference
save_inference_interval
:
4
# save inference
save_checkpoint_path
:
"
increment_model"
# save checkpoint path
save_checkpoint_path
:
"
increment_model"
# save checkpoint path
save_inference_path
:
"
inference"
# save inference path
save_inference_path
:
"
inference"
# save inference path
save_inference_feed_varnames
:
[]
# feed vars of save inference
save_inference_feed_varnames
:
[]
# feed vars of save inference
save_inference_fetch_varnames
:
[]
# fetch vars of save inference
save_inference_fetch_varnames
:
[]
# fetch vars of save inference
init_model_path
:
"
"
# load model path
init_model_path
:
"
"
# load model path
print_interval
:
10
print_interval
:
100
phases
:
[
phase1
]
-
name
:
single_gpu_train
class
:
train
# num of epochs
epochs
:
4
# device to run training or infer
device
:
gpu
save_checkpoint_interval
:
1
# save model interval of epochs
save_inference_interval
:
4
# save inference
save_checkpoint_path
:
"
increment_model"
# save checkpoint path
save_inference_path
:
"
inference"
# save inference path
save_inference_feed_varnames
:
[]
# feed vars of save inference
save_inference_fetch_varnames
:
[]
# fetch vars of save inference
init_model_path
:
"
"
# load model path
print_interval
:
100
phases
:
[
phase1
]
phases
:
[
phase1
]
-
name
:
single_cpu_infer
-
name
:
single_cpu_infer
class
:
infer
class
:
infer
# num of epochs
epochs
:
1
# device to run training or infer
# device to run training or infer
device
:
cpu
device
:
cpu
init_model_path
:
"
increment_model"
# load model path
init_model_path
:
"
increment_model/3"
# load model path
phases
:
[
phase2
]
-
name
:
single_gpu_infer
class
:
infer
# device to run training or infer
device
:
gpu
init_model_path
:
"
increment_model/3"
# load model path
phases
:
[
phase2
]
phases
:
[
phase2
]
# runner will run all the phase in each epoch
# runner will run all the phase in each epoch
...
@@ -87,10 +102,10 @@ phase:
...
@@ -87,10 +102,10 @@ phase:
-
name
:
phase1
-
name
:
phase1
model
:
"
{workspace}/model.py"
# user-defined model
model
:
"
{workspace}/model.py"
# user-defined model
dataset_name
:
dataloader_train
# select dataset by name
dataset_name
:
dataloader_train
# select dataset by name
thread_num
:
1
thread_num
:
8
-
name
:
phase2
-
name
:
phase2
model
:
"
{workspace}/model.py"
# user-defined model
model
:
"
{workspace}/model.py"
# user-defined model
dataset_name
:
dataset_infer
# select dataset by name
dataset_name
:
dataset_infer
# select dataset by name
thread_num
:
1
thread_num
:
8
models/rank/readme.md
浏览文件 @
84108fc5
...
@@ -37,7 +37,7 @@
...
@@ -37,7 +37,7 @@
| xDeepFM | xDeepFM |
[
xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems
](
https://dl.acm.org/doi/pdf/10.1145/3219819.3220023
)(
2018
)
|
| xDeepFM | xDeepFM |
[
xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems
](
https://dl.acm.org/doi/pdf/10.1145/3219819.3220023
)(
2018
)
|
| DIN | Deep Interest Network |
[
Deep Interest Network for Click-Through Rate Prediction
](
https://dl.acm.org/doi/pdf/10.1145/3219819.3219823
)(
2018
)
|
| DIN | Deep Interest Network |
[
Deep Interest Network for Click-Through Rate Prediction
](
https://dl.acm.org/doi/pdf/10.1145/3219819.3219823
)(
2018
)
|
| FGCNN | Feature Generation by CNN |
[
Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction
](
https://arxiv.org/pdf/1904.04447.pdf
)(
2019
)
|
| FGCNN | Feature Generation by CNN |
[
Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction
](
https://arxiv.org/pdf/1904.04447.pdf
)(
2019
)
|
| FIBINET | Combining Feature Importance and Bilinear feature Interaction |
[
《FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction》
](
https://arxiv.org/pdf/1905.09433.pdf
)
|
| FIBINET | Combining Feature Importance and Bilinear feature Interaction |
[
《FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction》
](
https://arxiv.org/pdf/1905.09433.pdf
)
(
2019
)
|
下面是每个模型的简介(注:图片引用自链接中的论文)
下面是每个模型的简介(注:图片引用自链接中的论文)
...
@@ -85,6 +85,7 @@
...
@@ -85,6 +85,7 @@
| DIN | 32 | 10 | 100 |
| DIN | 32 | 10 | 100 |
| Wide&Deep | 40 | 1 | 40 |
| Wide&Deep | 40 | 1 | 40 |
| xDeepFM | 100 | 1 | 10 |
| xDeepFM | 100 | 1 | 10 |
| Fibinet | 1000 | 8 | 4 |
### 数据处理
### 数据处理
参考每个模型目录数据下载&预处理脚本
参考每个模型目录数据下载&预处理脚本
...
@@ -124,6 +125,7 @@ python -m paddlerec.run -m ./config.yaml # 以DNN为例
...
@@ -124,6 +125,7 @@ python -m paddlerec.run -m ./config.yaml # 以DNN为例
| Criteo | xDeepFM | 0.48657 | -- | -- | -- |
| Criteo | xDeepFM | 0.48657 | -- | -- | -- |
| Census-income Data | Wide&Deep | 0.76195 | 0.90577 | -- | -- |
| Census-income Data | Wide&Deep | 0.76195 | 0.90577 | -- | -- |
| Amazon Product | DIN | 0.47005 | 0.86379 | -- | -- |
| Amazon Product | DIN | 0.47005 | 0.86379 | -- | -- |
| Criteo | Fibinet | -- | 0.86662 | -- | -- |
## 分布式
## 分布式
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录