提交 a15f7df1 编写于 作者: O overlordmax

fix bug

上级 5917daf3
......@@ -59,7 +59,8 @@
| 排序 | [xDeepFM](models/rank/xdeepfm/model.py) | ✓ | x | ✓ | x | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023) |
| 排序 | [DIN](models/rank/din/model.py) | ✓ | x | ✓ | x | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823) |
| 排序 | [Wide&Deep](models/rank/wide_deep/model.py) | ✓ | x | ✓ | x | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/2988450.2988454) |
| 排序 | [FGCNN](models/rank/fgcnn/model.py) | ✓ | ✓ | ✓ | ✓ | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf) |
| 排序 | [FGCNN](models/rank/fgcnn/model.py) | ✓ | ✓ | ✓ | ✓ | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf)
| 排序 | [Fibinet](models/rank/fibinet/model.py) | ✓ | ✓ | ✓ | ✓ | [RecSys19][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction]( https://arxiv.org/pdf/1905.09433.pdf) |
| 多任务 | [ESMM](models/multitask/esmm/model.py) | ✓ | ✓ | ✓ | ✓ | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://arxiv.org/abs/1804.07931) |
| 多任务 | [MMOE](models/multitask/mmoe/model.py) | ✓ | ✓ | ✓ | ✓ | [KDD 2018][Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/abs/10.1145/3219819.3220007) |
| 多任务 | [ShareBottom](models/multitask/share-bottom/model.py) | ✓ | ✓ | ✓ | ✓ | [1998][Multitask learning](http://reports-archive.adm.cs.cmu.edu/anon/1997/CMU-CS-97-203.pdf) |
......
......@@ -37,35 +37,43 @@
| xDeepFM | xDeepFM | [xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023)(2018) |
| DIN | Deep Interest Network | [Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823)(2018) |
| FGCNN | Feature Generation by CNN | [Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf)(2019) |
| FIBINET | Combining Feature Importance and Bilinear feature Interaction | [《FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction》]( https://arxiv.org/pdf/1905.09433.pdf) |
下面是每个模型的简介(注:图片引用自链接中的论文)
[wide&deep](https://dl.acm.org/doi/pdf/10.1145/2988450.2988454):
<p align="center">
<img align="center" src="../../doc/imgs/wide&deep.png">
<p>
[DeepFM](https://arxiv.org/pdf/1703.04247.pdf):
<p align="center">
<img align="center" src="../../doc/imgs/deepfm.png">
<p>
[XDeepFM](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023):
<p align="center">
<img align="center" src="../../doc/imgs/xdeepfm.png">
<p>
[DCN](https://dl.acm.org/doi/pdf/10.1145/3124749.3124754):
<p align="center">
<img align="center" src="../../doc/imgs/dcn.png">
<p>
[DIN](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823):
<p align="center">
<img align="center" src="../../doc/imgs/din.png">
<p>
[FIBINET](https://arxiv.org/pdf/1905.09433.pdf):
<p align="center">
<img align="center" src="../../doc/imgs/fibinet.png">
<p>
## 使用教程(快速开始)
使用样例数据快速开始,参考[训练](###训练) & [预测](###预测)
## 使用教程(复现论文)
为了方便使用者能够快速的跑通每一个模型,我们在每个模型下都提供了样例数据,并且调整了batch_size等超参以便在样例数据上更加友好的显示训练&测试日志。如果需要复现readme中的效果请按照如下表格调整batch_size等超参,并使用提供的脚本下载对应数据集以及数据预处理。
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册