Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
7f9869d3
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7f9869d3
编写于
7月 14, 2020
作者:
C
Chengmo
提交者:
GitHub
7月 14, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update paddlecloud train (#142)
* update * fix * delete ps-memory * fix * fix
上级
9b89d8f7
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
316 addition
and
48 deletion
+316
-48
core/engine/cluster/cloud/before_hook_cpu.sh.template
core/engine/cluster/cloud/before_hook_cpu.sh.template
+2
-2
core/engine/cluster/cloud/before_hook_gpu.sh.template
core/engine/cluster/cloud/before_hook_gpu.sh.template
+1
-1
core/engine/cluster/cloud/cluster.sh
core/engine/cluster/cloud/cluster.sh
+25
-2
core/engine/cluster/cloud/k8s_cpu_job.sh.template
core/engine/cluster/cloud/k8s_cpu_job.sh.template
+40
-0
core/engine/cluster/cloud/k8s_job.sh.template
core/engine/cluster/cloud/k8s_job.sh.template
+18
-4
core/engine/cluster/cloud/mpi_job.sh.template
core/engine/cluster/cloud/mpi_job.sh.template
+1
-1
core/engine/cluster/cluster.py
core/engine/cluster/cluster.py
+25
-9
doc/distributed_train.md
doc/distributed_train.md
+194
-24
models/rank/dnn/backend.yaml
models/rank/dnn/backend.yaml
+8
-5
setup.cfg
setup.cfg
+2
-0
未找到文件。
core/engine/cluster/cloud/before_hook_cpu.sh.template
浏览文件 @
7f9869d3
echo "Run before_hook.sh ..."
wget https://paddlerec.bj.bcebos.com/whl/PaddleRec.tar.gz
wget https://paddlerec.bj.bcebos.com/whl/PaddleRec.tar.gz
--no-check-certificate
tar -xf PaddleRec.tar.gz
...
...
@@ -10,6 +10,6 @@ python setup.py install
pip uninstall -y paddlepaddle
pip install paddlepaddle
-gpu
==<$ PADDLEPADDLE_VERSION $> --index-url=http://pip.baidu.com/pypi/simple --trusted-host pip.baidu.com
pip install paddlepaddle==<$ PADDLEPADDLE_VERSION $> --index-url=http://pip.baidu.com/pypi/simple --trusted-host pip.baidu.com
echo "End before_hook.sh ..."
core/engine/cluster/cloud/before_hook_gpu.sh.template
浏览文件 @
7f9869d3
echo "Run before_hook.sh ..."
wget https://paddlerec.bj.bcebos.com/whl/PaddleRec.tar.gz
wget https://paddlerec.bj.bcebos.com/whl/PaddleRec.tar.gz
--no-check-certificate
tar -xf PaddleRec.tar.gz
...
...
core/engine/cluster/cloud/cluster.sh
浏览文件 @
7f9869d3
...
...
@@ -39,7 +39,12 @@ function _before_submit() {
elif
[
${
DISTRIBUTE_MODE
}
==
"COLLECTIVE_GPU_K8S"
]
;
then
_gen_gpu_before_hook
_gen_k8s_config
_gen_k8s_job
_gen_k8s_gpu_job
_gen_end_hook
elif
[
${
DISTRIBUTE_MODE
}
==
"PS_CPU_K8S"
]
;
then
_gen_cpu_before_hook
_gen_k8s_config
_gen_k8s_cpu_job
_gen_end_hook
fi
...
...
@@ -101,6 +106,7 @@ function _gen_end_hook() {
function
_gen_mpi_job
()
{
echo
"gen mpi_job.sh"
sed
-e
"s#<
$
GROUP_NAME
$>
#
$GROUP_NAME
#g"
\
-e
"s#<
$
JOB_NAME
$>
#
$OLD_JOB_NAME
#g"
\
-e
"s#<
$
AK
$>
#
$AK
#g"
\
-e
"s#<
$
SK
$>
#
$SK
#g"
\
-e
"s#<
$
MPI_PRIORITY
$>
#
$PRIORITY
#g"
\
...
...
@@ -109,18 +115,34 @@ function _gen_mpi_job() {
${
abs_dir
}
/cloud/mpi_job.sh.template
>
${
PWD
}
/job.sh
}
function
_gen_k8s_job
()
{
function
_gen_k8s_
gpu_
job
()
{
echo
"gen k8s_job.sh"
sed
-e
"s#<
$
GROUP_NAME
$>
#
$GROUP_NAME
#g"
\
-e
"s#<
$
JOB_NAME
$>
#
$OLD_JOB_NAME
#g"
\
-e
"s#<
$
AK
$>
#
$AK
#g"
\
-e
"s#<
$
SK
$>
#
$SK
#g"
\
-e
"s#<
$
K8S_PRIORITY
$>
#
$PRIORITY
#g"
\
-e
"s#<
$
K8S_TRAINERS
$>
#
$K8S_TRAINERS
#g"
\
-e
"s#<
$
K8S_CPU_CORES
$>
#
$K8S_CPU_CORES
#g"
\
-e
"s#<
$
K8S_GPU_CARD
$>
#
$K8S_GPU_CARD
#g"
\
-e
"s#<
$
START_CMD
$>
#
$START_CMD
#g"
\
${
abs_dir
}
/cloud/k8s_job.sh.template
>
${
PWD
}
/job.sh
}
function
_gen_k8s_cpu_job
()
{
echo
"gen k8s_job.sh"
sed
-e
"s#<
$
GROUP_NAME
$>
#
$GROUP_NAME
#g"
\
-e
"s#<
$
JOB_NAME
$>
#
$OLD_JOB_NAME
#g"
\
-e
"s#<
$
AK
$>
#
$AK
#g"
\
-e
"s#<
$
SK
$>
#
$SK
#g"
\
-e
"s#<
$
K8S_PRIORITY
$>
#
$PRIORITY
#g"
\
-e
"s#<
$
K8S_TRAINERS
$>
#
$K8S_TRAINERS
#g"
\
-e
"s#<
$
K8S_PS_NUM
$>
#
$K8S_PS_NUM
#g"
\
-e
"s#<
$
K8S_PS_CORES
$>
#
$K8S_PS_CORES
#g"
\
-e
"s#<
$
K8S_CPU_CORES
$>
#
$K8S_CPU_CORES
#g"
\
-e
"s#<
$
START_CMD
$>
#
$START_CMD
#g"
\
${
abs_dir
}
/cloud/k8s_cpu_job.sh.template
>
${
PWD
}
/job.sh
}
#-----------------------------------------------------------------------------------------------------------------
...
...
@@ -145,6 +167,7 @@ function _submit() {
function
package_hook
()
{
cur_time
=
`
date
+
"%Y%m%d%H%M"
`
new_job_name
=
"
${
JOB_NAME
}
_
${
cur_time
}
"
export
OLD_JOB_NAME
=
${
JOB_NAME
}
export
JOB_NAME
=
${
new_job_name
}
export
job_file_path
=
"
${
PWD
}
/
${
new_job_name
}
"
mkdir
${
job_file_path
}
...
...
core/engine/cluster/cloud/k8s_cpu_job.sh.template
0 → 100644
浏览文件 @
7f9869d3
#!/bin/bash
###############################################################
## 注意-- 注意--注意 ##
## K8S PS-CPU多机作业作业示例 ##
###############################################################
job_name
=
<
$
JOB_NAME
$>
# 作业参数
group_name
=
"<
$
GROUP_NAME
$>
"
job_version
=
"paddle-fluid-v1.7.1"
start_cmd
=
"<
$
START_CMD
$>
"
wall_time
=
"10:00:00"
k8s_priority
=
<
$
K8S_PRIORITY
$>
k8s_trainers
=
<
$
K8S_TRAINERS
$>
k8s_cpu_cores
=
<
$
K8S_CPU_CORES
$>
k8s_ps_num
=
<
$
K8S_PS_NUM
$>
k8s_ps_cores
=
<
$
K8S_PS_CORES
$>
# 你的ak/sk(可在paddlecloud web页面【个人中心】处获取)
ak
=
<
$
AK
$>
sk
=
<
$
SK
$>
paddlecloud job
--ak
${
ak
}
--sk
${
sk
}
\
train
--job-name
${
job_name
}
\
--group-name
${
group_name
}
\
--job-conf
config.ini
\
--start-cmd
"
${
start_cmd
}
"
\
--files
./
*
\
--job-version
${
job_version
}
\
--k8s-priority
${
k8s_priority
}
\
--wall-time
${
wall_time
}
\
--k8s-trainers
${
k8s_trainers
}
\
--k8s-cpu-cores
${
k8s_cpu_cores
}
\
--k8s-ps-num
${
k8s_ps_num
}
\
--k8s-ps-cores
${
k8s_ps_cores
}
\
--is-standalone
0
\
--distribute-job-type
"PSERVER"
\
--json
\ No newline at end of file
core/engine/cluster/cloud/k8s_job.sh.template
浏览文件 @
7f9869d3
...
...
@@ -3,7 +3,7 @@
## 注意-- 注意--注意 ##
## K8S NCCL2多机作业作业示例 ##
###############################################################
job_name
=
${
JOB_NAME
}
job_name
=
<
$
JOB_NAME
$>
# 作业参数
group_name
=
"<
$
GROUP_NAME
$>
"
...
...
@@ -13,8 +13,20 @@ wall_time="10:00:00"
k8s_priority
=
<
$
K8S_PRIORITY
$>
k8s_trainers
=
<
$
K8S_TRAINERS
$>
k8s_cpu_cores
=
<
$
K8S_CPU_CORES
$>
k8s_gpu_cards
=
<
$
K8S_GPU_CARD
$>
is_stand_alone
=
0
nccl
=
"--distribute-job-type "
NCCL2
""
if
[
${
k8s_trainers
}
==
1
]
;
then
is_stand_alone
=
1
nccl
=
"--job-remark single-trainer"
if
[
${
k8s_gpu_cards
}
==
1]
;
then
nccl
=
"--job-remark single-gpu"
echo
"Attention: Use single GPU card for PaddleRec distributed training, please set runner class from 'cluster_train' to 'train' in config.yaml."
fi
fi
# 你的ak/sk(可在paddlecloud web页面【个人中心】处获取)
ak
=
<
$
AK
$>
sk
=
<
$
SK
$>
...
...
@@ -27,9 +39,11 @@ paddlecloud job --ak ${ak} --sk ${sk} \
--files
./
*
\
--job-version
${
job_version
}
\
--k8s-trainers
${
k8s_trainers
}
\
--k8s-cpu-cores
${
k8s_cpu_cores
}
\
--k8s-gpu-cards
${
k8s_gpu_cards
}
\
--k8s-priority
${
k8s_priority
}
\
--wall-time
${
wall_time
}
\
--is-standalone
0
\
--distribute-job-type
"NCCL2"
\
--json
\ No newline at end of file
--is-standalone
${
is_stand_alone
}
\
--json
\
${
nccl
}
\ No newline at end of file
core/engine/cluster/cloud/mpi_job.sh.template
浏览文件 @
7f9869d3
...
...
@@ -3,7 +3,7 @@
## 注意--注意--注意 ##
## MPI 类型作业演示 ##
###############################################################
job_name
=
${
JOB_NAME
}
job_name
=
<
$
JOB_NAME
$>
# 作业参数
group_name
=
<
$
GROUP_NAME
$>
...
...
core/engine/cluster/cluster.py
浏览文件 @
7f9869d3
...
...
@@ -67,10 +67,10 @@ class ClusterEngine(Engine):
@
staticmethod
def
workspace_replace
():
workspace
=
envs
.
get_runtime_environ
(
"
workspace"
)
remote_workspace
=
envs
.
get_runtime_environ
(
"remote_
workspace"
)
for
k
,
v
in
os
.
environ
.
items
():
v
=
v
.
replace
(
"{workspace}"
,
workspace
)
v
=
v
.
replace
(
"{workspace}"
,
remote_
workspace
)
os
.
environ
[
k
]
=
str
(
v
)
def
run
(
self
):
...
...
@@ -98,14 +98,12 @@ class ClusterEngine(Engine):
cluster_env_check_tool
=
PaddleCloudMpiEnv
()
else
:
raise
ValueError
(
"Paddlecloud with Mpi don't support GPU training, check your config"
"Paddlecloud with Mpi don't support GPU training, check your config
.yaml & backend.yaml
"
)
elif
cluster_type
.
upper
()
==
"K8S"
:
if
fleet_mode
==
"PS"
:
if
device
==
"CPU"
:
raise
ValueError
(
"PS-CPU on paddlecloud is not supported at this time, comming soon"
)
cluster_env_check_tool
=
CloudPsCpuEnv
()
elif
device
==
"GPU"
:
raise
ValueError
(
"PS-GPU on paddlecloud is not supported at this time, comming soon"
...
...
@@ -115,7 +113,7 @@ class ClusterEngine(Engine):
cluster_env_check_tool
=
CloudCollectiveEnv
()
elif
device
==
"CPU"
:
raise
ValueError
(
"Unexpected config -> device: CPU with fleet_mode: Collective, check your config"
"Unexpected config -> device: CPU with fleet_mode: Collective, check your config
.yaml
"
)
else
:
raise
ValueError
(
"cluster_type {} error, must in MPI/K8S"
.
format
(
...
...
@@ -234,7 +232,7 @@ class PaddleCloudMpiEnv(ClusterEnvBase):
"config.train_data_path"
,
""
)
if
self
.
cluster_env
[
"TRAIN_DATA_PATH"
]
==
""
:
raise
ValueError
(
"No -- TRAIN_DATA_PATH -- found in your backend.yaml, please
check
."
"No -- TRAIN_DATA_PATH -- found in your backend.yaml, please
add train_data_path in your backend yaml
."
)
# test_data_path
self
.
cluster_env
[
"TEST_DATA_PATH"
]
=
self
.
backend_env
.
get
(
...
...
@@ -274,7 +272,7 @@ class PaddleCloudK8sEnv(ClusterEnvBase):
category
=
UserWarning
,
stacklevel
=
2
)
warnings
.
warn
(
"The remote
mount point
will be mounted to the ./afs/"
,
"The remote
afs path
will be mounted to the ./afs/"
,
category
=
UserWarning
,
stacklevel
=
2
)
...
...
@@ -293,3 +291,21 @@ class CloudCollectiveEnv(PaddleCloudK8sEnv):
"submit.k8s_gpu_card"
,
1
)
self
.
cluster_env
[
"K8S_CPU_CORES"
]
=
self
.
backend_env
.
get
(
"submit.k8s_cpu_cores"
,
1
)
class
CloudPsCpuEnv
(
PaddleCloudK8sEnv
):
def
__init__
(
self
):
super
(
CloudPsCpuEnv
,
self
).
__init__
()
def
env_check
(
self
):
super
(
CloudPsCpuEnv
,
self
).
env_check
()
self
.
cluster_env
[
"DISTRIBUTE_MODE"
]
=
"PS_CPU_K8S"
self
.
cluster_env
[
"K8S_TRAINERS"
]
=
self
.
backend_env
.
get
(
"submit.k8s_trainers"
,
1
)
self
.
cluster_env
[
"K8S_CPU_CORES"
]
=
self
.
backend_env
.
get
(
"submit.k8s_cpu_cores"
,
2
)
self
.
cluster_env
[
"K8S_PS_NUM"
]
=
self
.
backend_env
.
get
(
"submit.k8s_ps_num"
,
1
)
self
.
cluster_env
[
"K8S_PS_CORES"
]
=
self
.
backend_env
.
get
(
"submit.k8s_ps_cores"
,
2
)
doc/distributed_train.md
浏览文件 @
7f9869d3
...
...
@@ -9,6 +9,7 @@
-
[
第三步:增加集群运行`backend.yaml`配置
](
#第三步增加集群运行backendyaml配置
)
-
[
MPI集群的Parameter Server模式配置
](
#mpi集群的parameter-server模式配置
)
-
[
K8S集群的Collective模式配置
](
#k8s集群的collective模式配置
)
-
[
K8S集群的PS-CPU模式配置
](
#k8s集群的ps-cpu模式配置
)
-
[
第四步:任务提交
](
#第四步任务提交
)
-
[
使用PaddleCloud Client提交
](
#使用paddlecloud-client提交
)
-
[
第一步:在`before_hook.sh`里手动安装PaddleRec
](
#第一步在before_hooksh里手动安装paddlerec
)
...
...
@@ -34,10 +35,10 @@
分布式运行首先需要更改
`config.yaml`
,主要调整以下内容:
-
workspace: 调整为在
节点运行时的工作目录
-
runner_class: 从单机的"train"调整为"cluster_train"
-
fleet_mode: 选则参数服务器模式
,抑或GPU Collective模式
-
distribute_strategy: 可选项,选择分布式训练的策略
-
workspace: 调整为在
远程点运行时的工作目录,一般设置为
`"./"`
即可
-
runner_class: 从单机的"train"调整为"cluster_train"
,单机训练->分布式训练(例外情况,k8s上单机单卡训练仍然为train)
-
fleet_mode: 选则参数服务器模式
(ps),抑或GPU的all-reduce模式(collective)
-
distribute_strategy: 可选项,选择分布式训练的策略
,目前只在参数服务器模式下生效,可选项:
`sync、asycn、half_async、geo`
配置选项具体参数,可以参考
[
yaml配置说明
](
./yaml.md
)
...
...
@@ -50,47 +51,56 @@
workspace
:
"
paddlerec.models.rank.dnn"
mode
:
[
single_cpu_train
]
# config of each runner.
# runner is a kind of paddle training class, which wraps the train/infer process.
runner
:
-
name
:
single_cpu_train
class
:
train
# num of epochs
epochs
:
4
# device to run training or infer
device
:
cpu
save_checkpoint_interval
:
2
# save model interval of epochs
save_checkpoint_path
:
"
increment_dnn"
# save checkpoint path
init_model_path
:
"
"
# load model path
save_checkpoint_interval
:
2
save_checkpoint_path
:
"
increment_dnn"
init_model_path
:
"
"
print_interval
:
10
phases
:
[
phase1
]
dataset
:
-
name
:
dataloader_train
batch_size
:
2
type
:
DataLoader
data_path
:
"
{workspace}/data/sample_data/train"
sparse_slots
:
"
click
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26"
dense_slots
:
"
dense_var:13"
```
分布式的训练配置可以改为:
```
yaml
# workspace
# 改变一:代码上传至节点后,与运行shell同在一个默认目录下
# 改变一:代码上传至节点后,在默认目录下
workspace
:
"
./"
mode
:
[
ps_cluster
]
# config of each runner.
# runner is a kind of paddle training class, which wraps the train/infer process.
runner
:
-
name
:
ps_cluster
# 改变二:调整runner的class
class
:
cluster_train
# num of epochs
epochs
:
4
# device to run training or infer
device
:
cpu
# 改变三 & 四: 指定fleet_mode 与 distribute_strategy
fleet_mode
:
ps
distribute_strategy
:
async
save_checkpoint_interval
:
2
# save model interval of epochs
save_checkpoint_path
:
"
increment_dnn"
# save checkpoint path
init_model_path
:
"
"
# load model path
save_checkpoint_interval
:
2
save_checkpoint_path
:
"
increment_dnn"
init_model_path
:
"
"
print_interval
:
10
phases
:
[
phase1
]
dataset
:
-
name
:
dataloader_train
batch_size
:
2
type
:
DataLoader
# 改变五: 改变数据的读取目录
# 通常而言,mpi模式下,数据会下载到远程节点执行目录的'./train_data'下, k8s则与挂载位置有关
data_path
:
"
{workspace}/train_data"
sparse_slots
:
"
click
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26"
dense_slots
:
"
dense_var:13"
```
除此之外,还需关注数据及模型加载的路径,一般而言:
...
...
@@ -165,7 +175,14 @@ submit:
# for k8s gpu
# k8s gpu 模式下,训练节点数,及每个节点上的GPU卡数
k8s_trainers
:
2
k8s-cpu-cores
:
4
k8s_gpu_card
:
1
# for k8s ps-cpu
k8s_trainers
:
2
k8s-cpu-cores
:
4
k8s_ps_num
:
2
k8s_ps_cores
:
4
```
...
...
@@ -173,18 +190,51 @@ submit:
除此之外,我们还需要关注上传到工作目录的文件(
`files选项`
)的路径问题,在示例中是
`./*.py`
,说明我们执行任务提交时,与这些py文件在同一目录。若不在同一目录,则需要适当调整files路径,或改为这些文件的绝对路径。
不建议利用
`files`
上传
数据文件,可以通过指定
`train_data_path`
自动下载,或
指定
`afs_remote_mount_point`
挂载实现数据到节点的转移。
不建议利用
`files`
上传
过大的数据文件,可以通过指定
`train_data_path`
自动下载,或在k8s模式下
指定
`afs_remote_mount_point`
挂载实现数据到节点的转移。
#### MPI集群的Parameter Server模式配置
下面是一个利用PaddleCloud提交MPI参数服务器模式任务的
`backend.yaml`
示例
首先调整
`config.yaml`
:
```
yaml
workspace
:
"
./"
mode
:
[
ps_cluster
]
dataset
:
-
name
:
dataloader_train
batch_size
:
2
type
:
DataLoader
data_path
:
"
{workspace}/train_data"
sparse_slots
:
"
click
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26"
dense_slots
:
"
dense_var:13"
runner
:
-
name
:
ps_cluster
class
:
cluster_train
epochs
:
2
device
:
cpu
fleet_mode
:
ps
save_checkpoint_interval
:
1
save_checkpoint_path
:
"
increment_dnn"
init_model_path
:
"
"
print_interval
:
1
phases
:
[
phase1
]
phase
:
-
name
:
phase1
model
:
"
{workspace}/model.py"
dataset_name
:
dataloader_train
thread_num
:
1
```
再新增
`backend.yaml`
```
yaml
backend
:
"
PaddleCloud"
cluster_type
:
mpi
# k8s 可选
cluster_type
:
mpi
config
:
# 填写任务运行的paddle官方版本号 >= 1.7.2, 默认1.7.2
paddle_version
:
"
1.7.2"
# hdfs/afs的配置信息填写
...
...
@@ -229,9 +279,45 @@ submit:
下面是一个利用PaddleCloud提交K8S集群进行GPU训练的
`backend.yaml`
示例
首先调整
`config.yaml`
```
yaml
workspace
:
"
./"
mode
:
[
collective_cluster
]
dataset
:
-
name
:
dataloader_train
batch_size
:
2
type
:
DataLoader
data_path
:
"
{workspace}/train_data"
sparse_slots
:
"
click
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26"
dense_slots
:
"
dense_var:13"
runner
:
-
name
:
collective_cluster
class
:
cluster_train
epochs
:
2
device
:
gpu
fleet_mode
:
collective
save_checkpoint_interval
:
1
# save model interval of epochs
save_checkpoint_path
:
"
increment_dnn"
# save checkpoint path
init_model_path
:
"
"
# load model path
print_interval
:
1
phases
:
[
phase1
]
phase
:
-
name
:
phase1
model
:
"
{workspace}/model.py"
dataset_name
:
dataloader_train
thread_num
:
1
```
再增加
`backend.yaml`
```
yaml
backend
:
"
PaddleCloud"
cluster_type
:
mpi
# k8s 可选
cluster_type
:
k8s
# k8s 可选
config
:
# 填写任务运行的paddle官方版本号 >= 1.7.2, 默认1.7.2
...
...
@@ -271,9 +357,93 @@ submit:
# for k8s gpu
# k8s gpu 模式下,训练节点数,及每个节点上的GPU卡数
k8s_trainers
:
2
k8s-cpu-cores
:
4
k8s_gpu_card
:
1
```
#### K8S集群的PS-CPU模式配置
下面是一个利用PaddleCloud提交K8S集群进行参数服务器CPU训练的
`backend.yaml`
示例
首先调整
`config.yaml`
:
```
yaml
workspace
:
"
./"
mode
:
[
ps_cluster
]
dataset
:
-
name
:
dataloader_train
batch_size
:
2
type
:
DataLoader
data_path
:
"
{workspace}/train_data"
sparse_slots
:
"
click
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26"
dense_slots
:
"
dense_var:13"
runner
:
-
name
:
ps_cluster
class
:
cluster_train
epochs
:
2
device
:
cpu
fleet_mode
:
ps
save_checkpoint_interval
:
1
save_checkpoint_path
:
"
increment_dnn"
init_model_path
:
"
"
print_interval
:
1
phases
:
[
phase1
]
phase
:
-
name
:
phase1
model
:
"
{workspace}/model.py"
dataset_name
:
dataloader_train
thread_num
:
1
```
再新增
`backend.yaml`
```
yaml
backend
:
"
PaddleCloud"
cluster_type
:
k8s
# k8s 可选
config
:
# 填写任务运行的paddle官方版本号 >= 1.7.2, 默认1.7.2
paddle_version
:
"
1.7.2"
# hdfs/afs的配置信息填写
fs_name
:
"
afs://xxx.com"
fs_ugi
:
"
usr,pwd"
# 填任务输出目录的远程地址,如afs:/user/your/path/ 则此处填 /user/your/path
output_path
:
"
"
# for k8s
# 填远程挂载地址,如afs:/user/your/path/ 则此处填 /user/your/path
afs_remote_mount_point
:
"
"
submit
:
# PaddleCloud 个人信息 AK 及 SK
ak
:
"
"
sk
:
"
"
# 任务运行优先级,默认high
priority
:
"
high"
# 任务名称
job_name
:
"
PaddleRec_CTR"
# 训练资源所在组
group
:
"
"
# 节点上的任务启动命令
start_cmd
:
"
python
-m
paddlerec.run
-m
./config.yaml"
# 本地需要上传到节点工作目录的文件
files
:
./*.py ./*.yaml
# for k8s gpu
# k8s ps-cpu 模式下,训练节点数,参数服务器节点数,及每个节点上的cpu核心数及内存限制
k8s_trainers
:
2
k8s-cpu-cores
:
4
k8s_ps_num
:
2
k8s_ps_cores
:
4
```
### 第四步:任务提交
当我们准备好
`config.yaml`
与
`backend.yaml`
,便可以进行一键任务提交,命令为:
...
...
models/rank/dnn/backend.yaml
浏览文件 @
7f9869d3
...
...
@@ -11,12 +11,8 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
workspace
:
"
./"
backend
:
"
PaddleCloud"
cluster_type
:
k8s
#
k8s
可选
cluster_type
:
k8s
#
mpi
可选
config
:
fs_name
:
"
afs://xxx.com"
...
...
@@ -56,5 +52,12 @@ submit:
# for k8s gpu
k8s_trainers
:
2
k8s_cpu_cores
:
2
k8s_gpu_card
:
1
# for k8s ps-cpu
k8s_trainers
:
2
k8s_cpu_cores
:
4
k8s_ps_num
:
2
k8s_ps_cores
:
4
setup.cfg
0 → 100644
浏览文件 @
7f9869d3
[easy_install]
index_url=http://pip.baidu.com/pypi/simple
\ No newline at end of file
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录