Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
9b89d8f7
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9b89d8f7
编写于
7月 10, 2020
作者:
C
Chengmo
提交者:
GitHub
7月 10, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add cluster train doc (#139)
* add cluster train doc * fix
上级
15c57177
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
380 addition
and
9 deletion
+380
-9
README.md
README.md
+2
-1
README_CN.md
README_CN.md
+2
-1
doc/distributed_train.md
doc/distributed_train.md
+376
-7
未找到文件。
README.md
浏览文件 @
9b89d8f7
...
...
@@ -134,7 +134,8 @@ python -m paddlerec.run -m paddlerec.models.rank.dnn
### Introductory tutorial
*
[
Data
](
doc/slot_reader.md
)
*
[
Model
](
doc/model.md
)
*
[
Train
](
doc/train.md
)
*
[
Loacl Train
](
doc/train.md
)
*
[
Distributed Train
](
doc/distributed_train.md
)
*
[
Predict
](
doc/predict.md
)
*
[
Serving
](
doc/serving.md
)
...
...
README_CN.md
浏览文件 @
9b89d8f7
...
...
@@ -139,7 +139,8 @@ python -m paddlerec.run -m paddlerec.models.rank.dnn
### 入门教程
*
[
数据准备
](
doc/slot_reader.md
)
*
[
模型调参
](
doc/model.md
)
*
[
启动训练
](
doc/train.md
)
*
[
启动单机训练
](
doc/train.md
)
*
[
启动分布式训练
](
doc/distributed_train.md
)
*
[
启动预测
](
doc/predict.md
)
*
[
快速部署
](
doc/serving.md
)
...
...
doc/distributed_train.md
浏览文件 @
9b89d8f7
# PaddleRec 分布式训练
目录
=================
## PaddleRec分布式运行
> 占位
### 本地模拟分布式
> 占位
-
[
目录
](
#目录
)
-
[
基于PaddleCloud的分布式训练启动方法
](
#基于paddlecloud的分布式训练启动方法
)
-
[
使用PaddleRec提交
](
#使用paddlerec提交
)
-
[
第一步:运行环境下安装PaddleCloud的Client
](
#第一步运行环境下安装paddlecloud的client
)
-
[
第二步:更改模型运行`config.yaml`配置
](
#第二步更改模型运行configyaml配置
)
-
[
第三步:增加集群运行`backend.yaml`配置
](
#第三步增加集群运行backendyaml配置
)
-
[
MPI集群的Parameter Server模式配置
](
#mpi集群的parameter-server模式配置
)
-
[
K8S集群的Collective模式配置
](
#k8s集群的collective模式配置
)
-
[
第四步:任务提交
](
#第四步任务提交
)
-
[
使用PaddleCloud Client提交
](
#使用paddlecloud-client提交
)
-
[
第一步:在`before_hook.sh`里手动安装PaddleRec
](
#第一步在before_hooksh里手动安装paddlerec
)
-
[
第二步:在`config.ini`中调整超参
](
#第二步在configini中调整超参
)
-
[
第三步:在`job.sh`中上传文件及修改启动命令
](
#第三步在jobsh中上传文件及修改启动命令
)
-
[
第四步: 提交任务
](
#第四步-提交任务
)
### K8S集群运行分布式
> 占位
# 基于PaddleCloud的分布式训练启动方法
> PaddleCloud目前处于百度内部测试推广阶段,将适时推出面向广大用户的公有云版本,欢迎持续关注
## 使用PaddleRec提交
### 第一步:运行环境下安装PaddleCloud的Client
-
环境要求:python > 2.7.5
-
首先在PaddleCloud平台申请
`group`
的权限,获得计算资源
-
然后在
[
PaddleCloud client使用手册
](
http://wiki.baidu.com/pages/viewpage.action?pageId=1017488941#1.%20安装PaddleCloud客户端
)
下载安装
`PaddleCloud-Cli`
-
在PaddleCloud的个人中心获取
`AK`
及
`SK`
### 第二步:更改模型运行`config.yaml`配置
分布式运行首先需要更改
`config.yaml`
,主要调整以下内容:
-
workspace: 调整为在节点运行时的工作目录
-
runner_class: 从单机的"train"调整为"cluster_train"
-
fleet_mode: 选则参数服务器模式,抑或GPU Collective模式
-
distribute_strategy: 可选项,选择分布式训练的策略
配置选项具体参数,可以参考
[
yaml配置说明
](
./yaml.md
)
以Rank/dnn模型为例
单机训练配置:
```
yaml
# workspace
workspace
:
"
paddlerec.models.rank.dnn"
mode
:
[
single_cpu_train
]
# config of each runner.
# runner is a kind of paddle training class, which wraps the train/infer process.
runner
:
-
name
:
single_cpu_train
class
:
train
# num of epochs
epochs
:
4
# device to run training or infer
device
:
cpu
save_checkpoint_interval
:
2
# save model interval of epochs
save_checkpoint_path
:
"
increment_dnn"
# save checkpoint path
init_model_path
:
"
"
# load model path
print_interval
:
10
phases
:
[
phase1
]
```
分布式的训练配置可以改为:
```
yaml
# workspace
# 改变一:代码上传至节点后,与运行shell同在一个默认目录下
workspace
:
"
./"
mode
:
[
ps_cluster
]
# config of each runner.
# runner is a kind of paddle training class, which wraps the train/infer process.
runner
:
-
name
:
ps_cluster
# 改变二:调整runner的class
class
:
cluster_train
# num of epochs
epochs
:
4
# device to run training or infer
device
:
cpu
# 改变三 & 四: 指定fleet_mode 与 distribute_strategy
fleet_mode
:
ps
distribute_strategy
:
async
save_checkpoint_interval
:
2
# save model interval of epochs
save_checkpoint_path
:
"
increment_dnn"
# save checkpoint path
init_model_path
:
"
"
# load model path
print_interval
:
10
phases
:
[
phase1
]
```
除此之外,还需关注数据及模型加载的路径,一般而言:
-
PaddleCloud MPI集群下,训练数据会下载到节点运行目录的
`./train_data/`
,测试数据位于
`./test_data/`
,其他数据及文件可以通过上传到hdfs配置的
`thirdparty`
后,自动下载到节点运行目录的
`./thirdparty/`
文件夹下。
-
PaddleCloud K8S集群下,hdfs的指定目录会挂载到节点工作目录的
`./afs/`
### 第三步:增加集群运行`backend.yaml`配置
分布式训练除了模型的部分调整外,更重要的是加入集群的配置选项,我们通过另一个yaml文件来指定分布式的运行配置,将分布式配置与模型超参解耦。
下面给出一个完整的
`backend.yaml`
示例:
```
yaml
backend
:
"
PaddleCloud"
cluster_type
:
mpi
# k8s 可选
config
:
# 填写任务运行的paddle官方版本号 >= 1.7.2, 默认1.7.2
paddle_version
:
"
1.7.2"
# hdfs/afs的配置信息填写
fs_name
:
"
afs://xxx.com"
fs_ugi
:
"
usr,pwd"
# 填任务输出目录的远程地址,如afs:/user/your/path/ 则此处填 /user/your/path
output_path
:
"
"
# for mpi
# 填远程数据及地址,如afs:/user/your/path/ 则此处填 /user/your/path
train_data_path
:
"
"
test_data_path
:
"
"
thirdparty_path
:
"
"
# for k8s
# 填远程挂载地址,如afs:/user/your/path/ 则此处填 /user/your/path
afs_remote_mount_point
:
"
"
# paddle参数服务器分布式底层超参,无特殊需求不理不改
communicator
:
FLAGS_communicator_is_sgd_optimizer
:
0
FLAGS_communicator_send_queue_size
:
5
FLAGS_communicator_thread_pool_size
:
32
FLAGS_communicator_max_merge_var_num
:
5
FLAGS_communicator_max_send_grad_num_before_recv
:
5
FLAGS_communicator_fake_rpc
:
0
FLAGS_rpc_retry_times
:
3
submit
:
# PaddleCloud 个人信息 AK 及 SK
ak
:
"
"
sk
:
"
"
# 任务运行优先级,默认high
priority
:
"
high"
# 任务名称
job_name
:
"
PaddleRec_CTR"
# 训练资源所在组
group
:
"
"
# 节点上的任务启动命令
start_cmd
:
"
python
-m
paddlerec.run
-m
./config.yaml"
# 本地需要上传到节点工作目录的文件
files
:
./*.py ./*.yaml
# for mpi ps-cpu
# mpi 参数服务器模式下,任务的节点数
nodes
:
2
# for k8s gpu
# k8s gpu 模式下,训练节点数,及每个节点上的GPU卡数
k8s_trainers
:
2
k8s_gpu_card
:
1
```
更多backend.yaml配置选项信息,可以查看
[
yaml配置说明
](
./yaml.md
)
除此之外,我们还需要关注上传到工作目录的文件(
`files选项`
)的路径问题,在示例中是
`./*.py`
,说明我们执行任务提交时,与这些py文件在同一目录。若不在同一目录,则需要适当调整files路径,或改为这些文件的绝对路径。
不建议利用
`files`
上传数据文件,可以通过指定
`train_data_path`
自动下载,或指定
`afs_remote_mount_point`
挂载实现数据到节点的转移。
#### MPI集群的Parameter Server模式配置
下面是一个利用PaddleCloud提交MPI参数服务器模式任务的
`backend.yaml`
示例
```
yaml
backend
:
"
PaddleCloud"
cluster_type
:
mpi
# k8s 可选
config
:
# 填写任务运行的paddle官方版本号 >= 1.7.2, 默认1.7.2
paddle_version
:
"
1.7.2"
# hdfs/afs的配置信息填写
fs_name
:
"
afs://xxx.com"
fs_ugi
:
"
usr,pwd"
# 填任务输出目录的远程地址,如afs:/user/your/path/ 则此处填 /user/your/path
output_path
:
"
"
# for mpi
# 填远程数据及地址,如afs:/user/your/path/ 则此处填 /user/your/path
train_data_path
:
"
"
test_data_path
:
"
"
thirdparty_path
:
"
"
submit
:
# PaddleCloud 个人信息 AK 及 SK
ak
:
"
"
sk
:
"
"
# 任务运行优先级,默认high
priority
:
"
high"
# 任务名称
job_name
:
"
PaddleRec_CTR"
# 训练资源所在组
group
:
"
"
# 节点上的任务启动命令
start_cmd
:
"
python
-m
paddlerec.run
-m
./config.yaml"
# 本地需要上传到节点工作目录的文件
files
:
./*.py ./*.yaml
# for mpi ps-cpu
# mpi 参数服务器模式下,任务的节点数
nodes
:
2
```
#### K8S集群的Collective模式配置
下面是一个利用PaddleCloud提交K8S集群进行GPU训练的
`backend.yaml`
示例
```
yaml
backend
:
"
PaddleCloud"
cluster_type
:
mpi
# k8s 可选
config
:
# 填写任务运行的paddle官方版本号 >= 1.7.2, 默认1.7.2
paddle_version
:
"
1.7.2"
# hdfs/afs的配置信息填写
fs_name
:
"
afs://xxx.com"
fs_ugi
:
"
usr,pwd"
# 填任务输出目录的远程地址,如afs:/user/your/path/ 则此处填 /user/your/path
output_path
:
"
"
# for k8s
# 填远程挂载地址,如afs:/user/your/path/ 则此处填 /user/your/path
afs_remote_mount_point
:
"
"
submit
:
# PaddleCloud 个人信息 AK 及 SK
ak
:
"
"
sk
:
"
"
# 任务运行优先级,默认high
priority
:
"
high"
# 任务名称
job_name
:
"
PaddleRec_CTR"
# 训练资源所在组
group
:
"
"
# 节点上的任务启动命令
start_cmd
:
"
python
-m
paddlerec.run
-m
./config.yaml"
# 本地需要上传到节点工作目录的文件
files
:
./*.py ./*.yaml
# for k8s gpu
# k8s gpu 模式下,训练节点数,及每个节点上的GPU卡数
k8s_trainers
:
2
k8s_gpu_card
:
1
```
### 第四步:任务提交
当我们准备好
`config.yaml`
与
`backend.yaml`
,便可以进行一键任务提交,命令为:
```
shell
python
-m
paddlerec.run
-m
config.yaml
-b
backend.yaml
```
执行过程中会进行配置的若干check,并给出错误提示。键入提交命令后,会有以下提交信息打印在屏幕上:
```
shell
The task submission folder is generated at /home/PaddleRec/models/rank/dnn/PaddleRec_CTR_202007091308
before_submit
gen gpu before_hook.sh
gen k8s_config.ini
gen k8s_job.sh
gen end_hook.sh
Start checking your job configuration, please be patient.
Congratulations! Job configuration check passed!
Congratulations! The new job is ready
for
training.
{
"groupName"
:
"xxxxxxx"
,
"jobId"
:
"job-xxxxxx"
,
"userId"
:
"x-x-x-x-x"
}
end submit
```
则代表任务已顺利提交PaddleCloud,恭喜。
同时,我们还可以进入
`/home/PaddleRec/models/rank/dnn/PaddleRec_CTR_202007091308`
这个目录检查我们的提交环境,该目录下有以下文件:
```
shell
.
├── backend.yaml
# 用户定义的分布式配置backend.yaml
├── config.yaml
# 用户定义的模型执行config.yaml
├── before_hook.sh
# PaddleRec生成的训练前执行的脚本
├── config.ini
# PaddleRec生成的PaddleCloud环境配置
├── end_hook.sh
# PaddleRec生成的训练后执行的脚本
├── job.sh
# PaddleRec生成的PaddleCloud任务提交脚本
└── model.py
# CTR模型的组网.py文件
```
该目录下的文件会被打平上传到节点的工作目录,用户可以复查PaddleRec生成的配置文件是否符合预期,如不符合预期,既可以调整backend.yaml,亦可以直接修改生成的文件,并执行:
```
shell
sh job.sh
```
再次提交任务。
## 使用PaddleCloud Client提交
假如你已经很熟悉PaddleCloud的使用,并且之前是用PaddleCloud-Client提交过任务,熟悉
`before_hook.sh`
、
`config.ini`
、
`job.sh`
,希望通过之前的方式提交PaddleCloud任务,PaddleRec也支持。
我们可以不添加
`backend.yaml`
,直接用PaddleCloud-Client的提交要求提交任务,除了为分布式训练
[
修改config.yaml
](
#第二步更改模型运行configyaml配置
)
以外,有以下几个额外的步骤:
### 第一步:在`before_hook.sh`里手动安装PaddleRec
```
shell
# before_hook.sh
echo
"Run before_hook.sh ..."
wget https://paddlerec.bj.bcebos.com/whl/PaddleRec.tar.gz
tar
-xf
PaddleRec.tar.gz
cd
PaddleRec
python setup.py
install
echo
"End before_hook.sh ..."
```
### 第二步:在`config.ini`中调整超参
```
shell
# config.ini
# 设置PADDLE_PADDLEREC_ROLE环境变量为WORKER
# 告诉PaddleRec当前运行环境在节点中,无需执行提交流程,直接执行分布式训练
PADDLE_PADDLEREC_ROLE
=
WORKER
```
### 第三步:在`job.sh`中上传文件及修改启动命令
我们需要在
`job.sh`
中上传运行PaddleRec所需的必要文件,如运行该模型的
`model.py`
、
`config.yaml`
以及
`reader.py`
等,PaddleRec的框架代码无需上传,已在before_hook中安装。
同时还需调整启动命令(start_cmd),调整为
```
shell
python
-m
paddlerec.run
-m
config.yaml
```
### 第四步: 提交任务
直接运行:
```
shell
sh job.sh
```
复用之前的提交脚本执行任务的提交。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录