Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
56b07f61
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
56b07f61
编写于
5月 25, 2020
作者:
F
frankwhzhang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
merge init_slot into new model style
上级
69d53643
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
52 addition
and
38 deletion
+52
-38
core/model.py
core/model.py
+29
-1
models/rank/dnn/model.py
models/rank/dnn/model.py
+23
-37
未找到文件。
core/model.py
浏览文件 @
56b07f61
...
...
@@ -134,7 +134,35 @@ class Model(object):
return
self
.
_build_optimizer
(
optimizer
,
learning_rate
)
def
input_data
(
self
,
is_infer
=
False
):
return
None
sparse_slots
=
envs
.
get_global_env
(
"sparse_slots"
,
None
,
"train.reader"
)
dense_slots
=
envs
.
get_global_env
(
"dense_slots"
,
None
,
"train.reader"
)
if
sparse_slots
is
not
None
or
dense_slots
is
not
None
:
sparse_slots
=
sparse_slots
.
strip
().
split
(
" "
)
dense_slots
=
dense_slots
.
strip
().
split
(
" "
)
dense_slots_shape
=
[[
int
(
j
)
for
j
in
i
.
split
(
":"
)[
1
].
strip
(
"[]"
).
split
(
","
)
]
for
i
in
dense_slots
]
dense_slots
=
[
i
.
split
(
":"
)[
0
]
for
i
in
dense_slots
]
self
.
_dense_data_var
=
[]
data_var_
=
[]
for
i
in
range
(
len
(
dense_slots
)):
l
=
fluid
.
layers
.
data
(
name
=
dense_slots
[
i
],
shape
=
dense_slots_shape
[
i
],
dtype
=
"float32"
)
data_var_
.
append
(
l
)
self
.
_dense_data_var
.
append
(
l
)
self
.
_sparse_data_var
=
[]
for
name
in
sparse_slots
:
l
=
fluid
.
layers
.
data
(
name
=
name
,
shape
=
[
1
],
lod_level
=
1
,
dtype
=
"int64"
)
data_var_
.
append
(
l
)
self
.
_sparse_data_var
.
append
(
l
)
return
data_var_
else
:
return
None
def
net
(
self
,
is_infer
=
False
):
return
None
...
...
models/rank/dnn/model.py
浏览文件 @
56b07f61
...
...
@@ -24,40 +24,33 @@ class Model(ModelBase):
def
__init__
(
self
,
config
):
ModelBase
.
__init__
(
self
,
config
)
def
input
(
self
):
def
_init_hyper_parameters
(
self
):
self
.
is_distributed
=
True
if
envs
.
get_trainer
(
)
==
"CtrTrainer"
else
False
self
.
sparse_feature_number
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_number"
,
None
,
self
.
_namespace
)
self
.
sparse_feature_dim
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
,
None
,
self
.
_namespace
)
self
.
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.learning_rate"
,
None
,
self
.
_namespace
)
def
net
(
self
,
input
,
is_infer
=
False
):
self
.
sparse_inputs
=
self
.
_sparse_data_var
[
1
:]
self
.
dense_input
=
self
.
_dense_data_var
[
0
]
self
.
label_input
=
self
.
_sparse_data_var
[
0
]
def
net
(
self
):
is_distributed
=
True
if
envs
.
get_trainer
()
==
"CtrTrainer"
else
False
sparse_feature_number
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_number"
,
None
,
self
.
_namespace
)
sparse_feature_dim
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
,
None
,
self
.
_namespace
)
def
embedding_layer
(
input
):
emb
=
fluid
.
layers
.
embedding
(
input
=
input
,
is_sparse
=
True
,
is_distributed
=
is_distributed
,
size
=
[
s
parse_feature_number
,
sparse_feature_dim
],
is_distributed
=
self
.
is_distributed
,
size
=
[
s
elf
.
sparse_feature_number
,
self
.
sparse_feature_dim
],
param_attr
=
fluid
.
ParamAttr
(
name
=
"SparseFeatFactors"
,
initializer
=
fluid
.
initializer
.
Uniform
()),
)
emb_sum
=
fluid
.
layers
.
sequence_pool
(
input
=
emb
,
pool_type
=
'sum'
)
return
emb_sum
def
fc
(
input
,
output_size
):
output
=
fluid
.
layers
.
fc
(
input
=
input
,
size
=
output_size
,
act
=
'relu'
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
scale
=
1.0
/
math
.
sqrt
(
input
.
shape
[
1
]))))
return
output
sparse_embed_seq
=
list
(
map
(
embedding_layer
,
self
.
sparse_inputs
))
concated
=
fluid
.
layers
.
concat
(
sparse_embed_seq
+
[
self
.
dense_input
],
axis
=
1
)
...
...
@@ -67,7 +60,14 @@ class Model(ModelBase):
self
.
_namespace
)
for
size
in
hidden_layers
:
fcs
.
append
(
fc
(
fcs
[
-
1
],
size
))
output
=
fluid
.
layers
.
fc
(
input
=
fcs
[
-
1
],
size
=
size
,
act
=
'relu'
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
scale
=
1.0
/
math
.
sqrt
(
fcs
[
-
1
].
shape
[
1
]))))
fcs
.
append
(
output
)
predict
=
fluid
.
layers
.
fc
(
input
=
fcs
[
-
1
],
...
...
@@ -78,13 +78,10 @@ class Model(ModelBase):
self
.
predict
=
predict
def
avg_loss
(
self
):
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
self
.
predict
,
label
=
self
.
label_input
)
avg_cost
=
fluid
.
layers
.
reduce_mean
(
cost
)
self
.
_cost
=
avg_cost
def
metrics
(
self
):
auc
,
batch_auc
,
_
=
fluid
.
layers
.
auc
(
input
=
self
.
predict
,
label
=
self
.
label_input
,
num_thresholds
=
2
**
12
,
...
...
@@ -92,20 +89,9 @@ class Model(ModelBase):
self
.
_metrics
[
"AUC"
]
=
auc
self
.
_metrics
[
"BATCH_AUC"
]
=
batch_auc
def
train_net
(
self
):
self
.
_init_slots
()
self
.
input
()
self
.
net
()
self
.
avg_loss
()
self
.
metrics
()
def
optimizer
(
self
):
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.learning_rate"
,
None
,
self
.
_namespace
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
,
lazy_mode
=
True
)
optimizer
=
fluid
.
optimizer
.
Adam
(
self
.
learning_rate
,
lazy_mode
=
True
)
return
optimizer
def
infer_net
(
self
):
self
.
_init_slots
()
self
.
input
()
self
.
net
()
pass
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录