dataloader_instance.py 7.0 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function

import os
17 18 19
from paddlerec.core.utils.envs import lazy_instance_by_fliename
from paddlerec.core.utils.envs import get_global_env
from paddlerec.core.utils.envs import get_runtime_environ
X
xujiaqi01 已提交
20
from paddlerec.core.reader import SlotReader
T
tangwei 已提交
21

X
fix  
xjqbest 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
def dataloader_by_name(readerclass, dataset_name, yaml_file):
    reader_class = lazy_instance_by_fliename(readerclass, "TrainReader")
    name = "dataset." + dataset_name + "."
    data_path = get_global_env(name + "data_path")
    #else:
    #    reader_name = "SlotReader"
    #    namespace = "evaluate.reader"
    #    data_path = get_global_env("test_data_path", None, namespace)

    if data_path.startswith("paddlerec::"):
        package_base = get_runtime_environ("PACKAGE_BASE")
        assert package_base is not None
        data_path = os.path.join(package_base, data_path.split("::")[1])

    files = [str(data_path) + "/%s" % x for x in os.listdir(data_path)]

    reader = reader_class(yaml_file)
    reader.init()
    def gen_reader():
        for file in files:
            with open(file, 'r') as f:
                for line in f:
                    line = line.rstrip('\n')
                    iter = reader.generate_sample(line)
                    for parsed_line in iter():
                        if parsed_line is None:
                            continue
                        else:
                            values = []
                            for pased in parsed_line:
                                values.append(pased[1])
                            yield values

    def gen_batch_reader():
        return reader.generate_batch_from_trainfiles(files)

    if hasattr(reader, 'generate_batch_from_trainfiles'):
        return gen_batch_reader()
    return gen_reader


def slotdataloader_by_name(readerclass, dataset_name, yaml_file):
    name = "dataset." + dataset_name + "."
    reader_name = "SlotReader"
    data_path = get_global_env(name + "data_path")

    if data_path.startswith("paddlerec::"):
        package_base = get_runtime_environ("PACKAGE_BASE")
        assert package_base is not None
        data_path = os.path.join(package_base, data_path.split("::")[1])

    files = [str(data_path) + "/%s" % x for x in os.listdir(data_path)]

    sparse = get_global_env(name + "sparse_slots")
    dense = get_global_env(name + "dense_slots")
    padding = get_global_env(name + "padding", 0)
    reader = SlotReader(yaml_file)
    reader.init(sparse, dense, int(padding))

    def gen_reader():
        for file in files:
            with open(file, 'r') as f:
                for line in f:
                    line = line.rstrip('\n')
                    iter = reader.generate_sample(line)
                    for parsed_line in iter():
                        if parsed_line is None:
                            continue
                        else:
                            values = []
                            for pased in parsed_line:
                                values.append(pased[1])
                            yield values

    def gen_batch_reader():
        return reader.generate_batch_from_trainfiles(files)

    if hasattr(reader, 'generate_batch_from_trainfiles'):
        return gen_batch_reader()
    return gen_reader
T
tangwei 已提交
102 103 104 105

def dataloader(readerclass, train, yaml_file):
    if train == "TRAIN":
        reader_name = "TrainReader"
M
malin10 已提交
106
        namespace = "train.reader"
T
tangwei 已提交
107 108 109
        data_path = get_global_env("train_data_path", None, namespace)
    else:
        reader_name = "EvaluateReader"
M
malin10 已提交
110
        namespace = "evaluate.reader"
T
tangwei 已提交
111 112
        data_path = get_global_env("test_data_path", None, namespace)

113
    if data_path.startswith("paddlerec::"):
T
tangwei 已提交
114 115 116 117
        package_base = get_runtime_environ("PACKAGE_BASE")
        assert package_base is not None
        data_path = os.path.join(package_base, data_path.split("::")[1])

T
tangwei 已提交
118 119
    files = [str(data_path) + "/%s" % x for x in os.listdir(data_path)]

T
tangwei 已提交
120
    reader_class = lazy_instance_by_fliename(readerclass, reader_name)
T
tangwei 已提交
121 122 123 124 125 126 127
    reader = reader_class(yaml_file)
    reader.init()

    def gen_reader():
        for file in files:
            with open(file, 'r') as f:
                for line in f:
T
tangwei 已提交
128
                    line = line.rstrip('\n')
T
tangwei 已提交
129 130 131 132 133 134 135 136 137
                    iter = reader.generate_sample(line)
                    for parsed_line in iter():
                        if parsed_line is None:
                            continue
                        else:
                            values = []
                            for pased in parsed_line:
                                values.append(pased[1])
                            yield values
T
tangwei 已提交
138

Y
add din  
yaoxuefeng 已提交
139 140 141 142 143
    def gen_batch_reader():
        return reader.generate_batch_from_trainfiles(files)

    if hasattr(reader, 'generate_batch_from_trainfiles'):
        return gen_batch_reader()
T
tangwei 已提交
144
    return gen_reader
X
xujiaqi01 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190


def slotdataloader(readerclass, train, yaml_file):
    if train == "TRAIN":
        reader_name = "SlotReader"
        namespace = "train.reader"
        data_path = get_global_env("train_data_path", None, namespace)
    else:
        reader_name = "SlotReader"
        namespace = "evaluate.reader"
        data_path = get_global_env("test_data_path", None, namespace)

    if data_path.startswith("paddlerec::"):
        package_base = get_runtime_environ("PACKAGE_BASE")
        assert package_base is not None
        data_path = os.path.join(package_base, data_path.split("::")[1])

    files = [str(data_path) + "/%s" % x for x in os.listdir(data_path)]

    sparse = get_global_env("sparse_slots", None, namespace)
    dense = get_global_env("dense_slots", None, namespace)
    padding = get_global_env("padding", 0, namespace)
    reader = SlotReader(yaml_file)
    reader.init(sparse, dense, int(padding))

    def gen_reader():
        for file in files:
            with open(file, 'r') as f:
                for line in f:
                    line = line.rstrip('\n')
                    iter = reader.generate_sample(line)
                    for parsed_line in iter():
                        if parsed_line is None:
                            continue
                        else:
                            values = []
                            for pased in parsed_line:
                                values.append(pased[1])
                            yield values

    def gen_batch_reader():
        return reader.generate_batch_from_trainfiles(files)

    if hasattr(reader, 'generate_batch_from_trainfiles'):
        return gen_batch_reader()
    return gen_reader