# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os from paddlerec.core.utils.envs import lazy_instance_by_fliename from paddlerec.core.utils.envs import get_global_env from paddlerec.core.utils.envs import get_runtime_environ from paddlerec.core.reader import SlotReader def dataloader_by_name(readerclass, dataset_name, yaml_file): reader_class = lazy_instance_by_fliename(readerclass, "TrainReader") name = "dataset." + dataset_name + "." data_path = get_global_env(name + "data_path") #else: # reader_name = "SlotReader" # namespace = "evaluate.reader" # data_path = get_global_env("test_data_path", None, namespace) if data_path.startswith("paddlerec::"): package_base = get_runtime_environ("PACKAGE_BASE") assert package_base is not None data_path = os.path.join(package_base, data_path.split("::")[1]) files = [str(data_path) + "/%s" % x for x in os.listdir(data_path)] reader = reader_class(yaml_file) reader.init() def gen_reader(): for file in files: with open(file, 'r') as f: for line in f: line = line.rstrip('\n') iter = reader.generate_sample(line) for parsed_line in iter(): if parsed_line is None: continue else: values = [] for pased in parsed_line: values.append(pased[1]) yield values def gen_batch_reader(): return reader.generate_batch_from_trainfiles(files) if hasattr(reader, 'generate_batch_from_trainfiles'): return gen_batch_reader() return gen_reader def slotdataloader_by_name(readerclass, dataset_name, yaml_file): name = "dataset." + dataset_name + "." reader_name = "SlotReader" data_path = get_global_env(name + "data_path") if data_path.startswith("paddlerec::"): package_base = get_runtime_environ("PACKAGE_BASE") assert package_base is not None data_path = os.path.join(package_base, data_path.split("::")[1]) files = [str(data_path) + "/%s" % x for x in os.listdir(data_path)] sparse = get_global_env(name + "sparse_slots") dense = get_global_env(name + "dense_slots") padding = get_global_env(name + "padding", 0) reader = SlotReader(yaml_file) reader.init(sparse, dense, int(padding)) def gen_reader(): for file in files: with open(file, 'r') as f: for line in f: line = line.rstrip('\n') iter = reader.generate_sample(line) for parsed_line in iter(): if parsed_line is None: continue else: values = [] for pased in parsed_line: values.append(pased[1]) yield values def gen_batch_reader(): return reader.generate_batch_from_trainfiles(files) if hasattr(reader, 'generate_batch_from_trainfiles'): return gen_batch_reader() return gen_reader def dataloader(readerclass, train, yaml_file): if train == "TRAIN": reader_name = "TrainReader" namespace = "train.reader" data_path = get_global_env("train_data_path", None, namespace) else: reader_name = "EvaluateReader" namespace = "evaluate.reader" data_path = get_global_env("test_data_path", None, namespace) if data_path.startswith("paddlerec::"): package_base = get_runtime_environ("PACKAGE_BASE") assert package_base is not None data_path = os.path.join(package_base, data_path.split("::")[1]) files = [str(data_path) + "/%s" % x for x in os.listdir(data_path)] reader_class = lazy_instance_by_fliename(readerclass, reader_name) reader = reader_class(yaml_file) reader.init() def gen_reader(): for file in files: with open(file, 'r') as f: for line in f: line = line.rstrip('\n') iter = reader.generate_sample(line) for parsed_line in iter(): if parsed_line is None: continue else: values = [] for pased in parsed_line: values.append(pased[1]) yield values def gen_batch_reader(): return reader.generate_batch_from_trainfiles(files) if hasattr(reader, 'generate_batch_from_trainfiles'): return gen_batch_reader() return gen_reader def slotdataloader(readerclass, train, yaml_file): if train == "TRAIN": reader_name = "SlotReader" namespace = "train.reader" data_path = get_global_env("train_data_path", None, namespace) else: reader_name = "SlotReader" namespace = "evaluate.reader" data_path = get_global_env("test_data_path", None, namespace) if data_path.startswith("paddlerec::"): package_base = get_runtime_environ("PACKAGE_BASE") assert package_base is not None data_path = os.path.join(package_base, data_path.split("::")[1]) files = [str(data_path) + "/%s" % x for x in os.listdir(data_path)] sparse = get_global_env("sparse_slots", None, namespace) dense = get_global_env("dense_slots", None, namespace) padding = get_global_env("padding", 0, namespace) reader = SlotReader(yaml_file) reader.init(sparse, dense, int(padding)) def gen_reader(): for file in files: with open(file, 'r') as f: for line in f: line = line.rstrip('\n') iter = reader.generate_sample(line) for parsed_line in iter(): if parsed_line is None: continue else: values = [] for pased in parsed_line: values.append(pased[1]) yield values def gen_batch_reader(): return reader.generate_batch_from_trainfiles(files) if hasattr(reader, 'generate_batch_from_trainfiles'): return gen_batch_reader() return gen_reader