model.py 4.7 KB
Newer Older
M
malin10 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid

17 18
from paddlerec.core.utils import envs
from paddlerec.core.model import Model as ModelBase
M
malin10 已提交
19 20 21 22 23 24 25 26


class Model(ModelBase):
    def __init__(self, config):
        ModelBase.__init__(self, config)

    def input(self):
        TRIGRAM_D = envs.get_global_env("hyper_parameters.TRIGRAM_D", None, self._namespace)
T
for mat  
tangwei 已提交
27
        Neg = envs.get_global_env("hyper_parameters.NEG", None, self._namespace)
M
malin10 已提交
28 29 30

        self.query = fluid.data(name="query", shape=[-1, TRIGRAM_D], dtype='float32', lod_level=0)
        self.doc_pos = fluid.data(name="doc_pos", shape=[-1, TRIGRAM_D], dtype='float32', lod_level=0)
T
for mat  
tangwei 已提交
31 32
        self.doc_negs = [fluid.data(name="doc_neg_" + str(i), shape=[-1, TRIGRAM_D], dtype="float32", lod_level=0) for i
                         in range(Neg)]
M
malin10 已提交
33 34 35 36 37 38 39 40 41 42
        self._data_var.append(self.query)
        self._data_var.append(self.doc_pos)
        for input in self.doc_negs:
            self._data_var.append(input)

        if self._platform != "LINUX":
            self._data_loader = fluid.io.DataLoader.from_generator(
                feed_list=self._data_var, capacity=64, use_double_buffer=False, iterable=False)

    def net(self, is_infer=False):
T
for mat  
tangwei 已提交
43
        hidden_layers = envs.get_global_env("hyper_parameters.fc_sizes", None, self._namespace)
M
malin10 已提交
44
        hidden_acts = envs.get_global_env("hyper_parameters.fc_acts", None, self._namespace)
T
for mat  
tangwei 已提交
45

M
malin10 已提交
46 47
        def fc(data, hidden_layers, hidden_acts, names):
            fc_inputs = [data]
T
for mat  
tangwei 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61
            for i in range(len(hidden_layers)):
                xavier = fluid.initializer.Xavier(uniform=True, fan_in=fc_inputs[-1].shape[1], fan_out=hidden_layers[i])
                out = fluid.layers.fc(input=fc_inputs[-1],
                                      size=hidden_layers[i],
                                      act=hidden_acts[i],
                                      param_attr=xavier,
                                      bias_attr=xavier,
                                      name=names[i])
                fc_inputs.append(out)
            return fc_inputs[-1]

        query_fc = fc(self.query, hidden_layers, hidden_acts, ['query_l1', 'query_l2', 'query_l3'])
        doc_pos_fc = fc(self.doc_pos, hidden_layers, hidden_acts, ['doc_pos_l1', 'doc_pos_l2', 'doc_pos_l3'])
        self.R_Q_D_p = fluid.layers.cos_sim(query_fc, doc_pos_fc)
M
malin10 已提交
62 63 64 65 66

        if is_infer:
            return

        R_Q_D_ns = []
T
for mat  
tangwei 已提交
67 68 69
        for i, doc_neg in enumerate(self.doc_negs):
            doc_neg_fc_i = fc(doc_neg, hidden_layers, hidden_acts,
                              ['doc_neg_l1_' + str(i), 'doc_neg_l2_' + str(i), 'doc_neg_l3_' + str(i)])
M
malin10 已提交
70 71
            R_Q_D_ns.append(fluid.layers.cos_sim(query_fc, doc_neg_fc_i))
        concat_Rs = fluid.layers.concat(input=[self.R_Q_D_p] + R_Q_D_ns, axis=-1)
T
for mat  
tangwei 已提交
72 73 74
        prob = fluid.layers.softmax(concat_Rs, axis=1)

        hit_prob = fluid.layers.slice(prob, axes=[0, 1], starts=[0, 0], ends=[4, 1])
M
malin10 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
        loss = -fluid.layers.reduce_sum(fluid.layers.log(hit_prob))
        self.avg_cost = fluid.layers.mean(x=loss)

    def infer_results(self):
        self._infer_results['query_doc_sim'] = self.R_Q_D_p

    def avg_loss(self):
        self._cost = self.avg_cost

    def metrics(self):
        self._metrics["LOSS"] = self.avg_cost

    def train_net(self):
        self.input()
        self.net(is_infer=False)
        self.avg_loss()
        self.metrics()

    def optimizer(self):
        learning_rate = envs.get_global_env("hyper_parameters.learning_rate", None, self._namespace)
        optimizer = fluid.optimizer.SGD(learning_rate)
        return optimizer

    def infer_input(self):
        TRIGRAM_D = envs.get_global_env("hyper_parameters.TRIGRAM_D", None, self._namespace)
        self.query = fluid.data(name="query", shape=[-1, TRIGRAM_D], dtype='float32', lod_level=0)
        self.doc_pos = fluid.data(name="doc_pos", shape=[-1, TRIGRAM_D], dtype='float32', lod_level=0)
        self._infer_data_var = [self.query, self.doc_pos]

T
for mat  
tangwei 已提交
104
        self._infer_data_loader = fluid.io.DataLoader.from_generator(
M
malin10 已提交
105
            feed_list=self._infer_data_var, capacity=64, use_double_buffer=False, iterable=False)
T
for mat  
tangwei 已提交
106

M
malin10 已提交
107
    def infer_net(self):
T
for mat  
tangwei 已提交
108
        self.infer_input()
M
malin10 已提交
109
        self.net(is_infer=True)
T
for mat  
tangwei 已提交
110
        self.infer_results()