model.py 6.5 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import math

T
tangwei 已提交
17 18
import paddle.fluid as fluid

19 20
from paddlerec.core.utils import envs
from paddlerec.core.model import Model as ModelBase
21 22 23 24 25 26 27 28 29 30 31


class Model(ModelBase):
    def __init__(self, config):
        ModelBase.__init__(self, config)

    def deepfm_net(self):
        init_value_ = 0.1
        is_distributed = True if envs.get_trainer() == "CtrTrainer" else False
        sparse_feature_number = envs.get_global_env("hyper_parameters.sparse_feature_number", None, self._namespace)
        sparse_feature_dim = envs.get_global_env("hyper_parameters.sparse_feature_dim", None, self._namespace)
T
for mat  
tangwei 已提交
32

33
        # ------------------------- network input --------------------------
T
for mat  
tangwei 已提交
34

35 36
        num_field = envs.get_global_env("hyper_parameters.num_field", None, self._namespace)
        
X
xujiaqi01 已提交
37 38 39
        raw_feat_idx = self._sparse_data_var[1]
        raw_feat_value = self._dense_data_var[0]
        self.label = self._sparse_data_var[0]
40
        
X
xujiaqi01 已提交
41 42 43
        feat_idx = raw_feat_idx
        feat_value = fluid.layers.reshape(raw_feat_value, [-1, num_field, 1])  # None * num_field * 1
       
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
        reg = envs.get_global_env("hyper_parameters.reg", 1e-4, self._namespace)
        first_weights_re = fluid.embedding(
            input=feat_idx,
            is_sparse=True,
            is_distributed=is_distributed,
            dtype='float32',
            size=[sparse_feature_number + 1, 1],
            padding_idx=0,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.TruncatedNormalInitializer(
                    loc=0.0, scale=init_value_),
                regularizer=fluid.regularizer.L1DecayRegularizer(reg)))
        first_weights = fluid.layers.reshape(
            first_weights_re, shape=[-1, num_field, 1])  # None * num_field * 1
        y_first_order = fluid.layers.reduce_sum((first_weights * feat_value), 1)

T
for mat  
tangwei 已提交
60
        # ------------------------- second order term --------------------------
61 62 63 64 65 66 67 68 69 70 71 72 73 74

        feat_embeddings_re = fluid.embedding(
            input=feat_idx,
            is_sparse=True,
            is_distributed=is_distributed,
            dtype='float32',
            size=[sparse_feature_number + 1, sparse_feature_dim],
            padding_idx=0,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.TruncatedNormalInitializer(
                    loc=0.0, scale=init_value_ / math.sqrt(float(sparse_feature_dim)))))
        feat_embeddings = fluid.layers.reshape(
            feat_embeddings_re,
            shape=[-1, num_field,
T
for mat  
tangwei 已提交
75
                   sparse_feature_dim])  # None * num_field * embedding_size
76
        feat_embeddings = feat_embeddings * feat_value  # None * num_field * embedding_size
T
for mat  
tangwei 已提交
77

78 79
        # sum_square part
        summed_features_emb = fluid.layers.reduce_sum(feat_embeddings,
T
for mat  
tangwei 已提交
80
                                                      1)  # None * embedding_size
81 82 83 84 85 86 87 88 89 90 91 92 93
        summed_features_emb_square = fluid.layers.square(
            summed_features_emb)  # None * embedding_size

        # square_sum part
        squared_features_emb = fluid.layers.square(
            feat_embeddings)  # None * num_field * embedding_size
        squared_sum_features_emb = fluid.layers.reduce_sum(
            squared_features_emb, 1)  # None * embedding_size

        y_second_order = 0.5 * fluid.layers.reduce_sum(
            summed_features_emb_square - squared_sum_features_emb, 1,
            keep_dim=True)  # None * 1

T
for mat  
tangwei 已提交
94
        # ------------------------- DNN --------------------------
95 96 97 98

        layer_sizes = envs.get_global_env("hyper_parameters.fc_sizes", None, self._namespace)
        act = envs.get_global_env("hyper_parameters.act", None, self._namespace)
        y_dnn = fluid.layers.reshape(feat_embeddings,
T
for mat  
tangwei 已提交
99
                                     [-1, num_field * sparse_feature_dim])
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
        for s in layer_sizes:
            y_dnn = fluid.layers.fc(
                input=y_dnn,
                size=s,
                act=act,
                param_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.TruncatedNormalInitializer(
                        loc=0.0, scale=init_value_ / math.sqrt(float(10)))),
                bias_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.TruncatedNormalInitializer(
                        loc=0.0, scale=init_value_)))
        y_dnn = fluid.layers.fc(
            input=y_dnn,
            size=1,
            act=None,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.TruncatedNormalInitializer(
                    loc=0.0, scale=init_value_)),
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.TruncatedNormalInitializer(
                    loc=0.0, scale=init_value_)))
T
for mat  
tangwei 已提交
121 122

        # ------------------------- DeepFM --------------------------
123 124

        self.predict = fluid.layers.sigmoid(y_first_order + y_second_order + y_dnn)
T
for mat  
tangwei 已提交
125

126
    def train_net(self):
X
xjqbest 已提交
127
        self._init_slots()
128
        self.deepfm_net()
T
for mat  
tangwei 已提交
129 130

        # ------------------------- Cost(logloss) --------------------------
131

X
xujiaqi01 已提交
132
        cost = fluid.layers.log_loss(input=self.predict, label=fluid.layers.cast(self.label, "float32"))
133
        avg_cost = fluid.layers.reduce_sum(cost)
T
for mat  
tangwei 已提交
134

135 136
        self._cost = avg_cost

T
for mat  
tangwei 已提交
137 138
        # ------------------------- Metric(Auc) --------------------------

139 140 141
        predict_2d = fluid.layers.concat([1 - self.predict, self.predict], 1)
        label_int = fluid.layers.cast(self.label, 'int64')
        auc_var, batch_auc_var, _ = fluid.layers.auc(input=predict_2d,
T
for mat  
tangwei 已提交
142 143
                                                     label=label_int,
                                                     slide_steps=0)
144 145 146 147 148 149 150 151
        self._metrics["AUC"] = auc_var
        self._metrics["BATCH_AUC"] = batch_auc_var

    def optimizer(self):
        learning_rate = envs.get_global_env("hyper_parameters.learning_rate", None, self._namespace)
        optimizer = fluid.optimizer.Adam(learning_rate, lazy_mode=True)
        return optimizer

X
xjqbest 已提交
152 153
    def infer_net(self):
        self.train_net()