model.py 6.3 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import math

T
tangwei 已提交
17 18
import paddle.fluid as fluid

19 20
from paddlerec.core.utils import envs
from paddlerec.core.model import Model as ModelBase
21 22 23 24 25 26


class Model(ModelBase):
    def __init__(self, config):
        ModelBase.__init__(self, config)

27 28 29 30 31 32 33 34 35 36 37 38 39
    def _init_hyper_parameters(self):
        self.sparse_feature_number = envs.get_global_env(
            "hyper_parameters.sparse_feature_number", None)
        self.sparse_feature_dim = envs.get_global_env(
            "hyper_parameters.sparse_feature_dim", None)
        self.num_field = envs.get_global_env("hyper_parameters.num_field",
                                             None)
        self.reg = envs.get_global_env("hyper_parameters.reg", 1e-4)
        self.layer_sizes = envs.get_global_env("hyper_parameters.fc_sizes",
                                               None)
        self.act = envs.get_global_env("hyper_parameters.act", None)

    def net(self, inputs, is_infer=False):
40 41
        init_value_ = 0.1
        is_distributed = True if envs.get_trainer() == "CtrTrainer" else False
T
for mat  
tangwei 已提交
42

43
        # ------------------------- network input --------------------------
T
for mat  
tangwei 已提交
44

X
xujiaqi01 已提交
45 46 47
        raw_feat_idx = self._sparse_data_var[1]
        raw_feat_value = self._dense_data_var[0]
        self.label = self._sparse_data_var[0]
T
tangwei 已提交
48

X
xujiaqi01 已提交
49
        feat_idx = raw_feat_idx
T
tangwei 已提交
50
        feat_value = fluid.layers.reshape(
51
            raw_feat_value, [-1, self.num_field, 1])  # None * num_field * 1
T
tangwei 已提交
52

53 54 55 56 57
        first_weights_re = fluid.embedding(
            input=feat_idx,
            is_sparse=True,
            is_distributed=is_distributed,
            dtype='float32',
58
            size=[self.sparse_feature_number + 1, 1],
59 60 61 62
            padding_idx=0,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.TruncatedNormalInitializer(
                    loc=0.0, scale=init_value_),
63
                regularizer=fluid.regularizer.L1DecayRegularizer(self.reg)))
64
        first_weights = fluid.layers.reshape(
65 66
            first_weights_re,
            shape=[-1, self.num_field, 1])  # None * num_field * 1
T
tangwei 已提交
67 68
        y_first_order = fluid.layers.reduce_sum((first_weights * feat_value),
                                                1)
69

T
for mat  
tangwei 已提交
70
        # ------------------------- second order term --------------------------
71 72 73 74 75 76

        feat_embeddings_re = fluid.embedding(
            input=feat_idx,
            is_sparse=True,
            is_distributed=is_distributed,
            dtype='float32',
77
            size=[self.sparse_feature_number + 1, self.sparse_feature_dim],
78 79 80
            padding_idx=0,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.TruncatedNormalInitializer(
T
tangwei 已提交
81
                    loc=0.0,
82 83
                    scale=init_value_ /
                    math.sqrt(float(self.sparse_feature_dim)))))
84 85
        feat_embeddings = fluid.layers.reshape(
            feat_embeddings_re,
86 87
            shape=[-1, self.num_field, self.sparse_feature_dim
                   ])  # None * num_field * embedding_size
88
        feat_embeddings = feat_embeddings * feat_value  # None * num_field * embedding_size
T
for mat  
tangwei 已提交
89

90
        # sum_square part
T
tangwei 已提交
91 92
        summed_features_emb = fluid.layers.reduce_sum(
            feat_embeddings, 1)  # None * embedding_size
93 94 95 96 97 98 99 100 101 102
        summed_features_emb_square = fluid.layers.square(
            summed_features_emb)  # None * embedding_size

        # square_sum part
        squared_features_emb = fluid.layers.square(
            feat_embeddings)  # None * num_field * embedding_size
        squared_sum_features_emb = fluid.layers.reduce_sum(
            squared_features_emb, 1)  # None * embedding_size

        y_second_order = 0.5 * fluid.layers.reduce_sum(
T
tangwei 已提交
103 104
            summed_features_emb_square - squared_sum_features_emb,
            1,
105 106
            keep_dim=True)  # None * 1

T
for mat  
tangwei 已提交
107
        # ------------------------- DNN --------------------------
108

109 110 111
        y_dnn = fluid.layers.reshape(
            feat_embeddings, [-1, self.num_field * self.sparse_feature_dim])
        for s in self.layer_sizes:
112 113 114
            y_dnn = fluid.layers.fc(
                input=y_dnn,
                size=s,
115
                act=self.act,
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
                param_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.TruncatedNormalInitializer(
                        loc=0.0, scale=init_value_ / math.sqrt(float(10)))),
                bias_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.TruncatedNormalInitializer(
                        loc=0.0, scale=init_value_)))
        y_dnn = fluid.layers.fc(
            input=y_dnn,
            size=1,
            act=None,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.TruncatedNormalInitializer(
                    loc=0.0, scale=init_value_)),
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.TruncatedNormalInitializer(
                    loc=0.0, scale=init_value_)))
T
for mat  
tangwei 已提交
132 133

        # ------------------------- DeepFM --------------------------
134

T
tangwei 已提交
135 136 137 138
        self.predict = fluid.layers.sigmoid(y_first_order + y_second_order +
                                            y_dnn)
        cost = fluid.layers.log_loss(
            input=self.predict, label=fluid.layers.cast(self.label, "float32"))
139
        avg_cost = fluid.layers.reduce_sum(cost)
T
for mat  
tangwei 已提交
140

141 142 143 144 145
        self._cost = avg_cost

        predict_2d = fluid.layers.concat([1 - self.predict, self.predict], 1)
        label_int = fluid.layers.cast(self.label, 'int64')
        auc_var, batch_auc_var, _ = fluid.layers.auc(input=predict_2d,
T
for mat  
tangwei 已提交
146 147
                                                     label=label_int,
                                                     slide_steps=0)
148 149
        self._metrics["AUC"] = auc_var
        self._metrics["BATCH_AUC"] = batch_auc_var
150 151
        if is_infer:
            self._infer_results["AUC"] = auc_var