runner.py 27.6 KB
Newer Older
C
Chengmo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import time
C
Chengmo 已提交
19
import warnings
C
Chengmo 已提交
20
import numpy as np
21
import random
F
frankwhzhang 已提交
22
import logging
C
Chengmo 已提交
23
import paddle.fluid as fluid
C
Chengmo 已提交
24

C
Chengmo 已提交
25
from paddlerec.core.utils import envs
26
from paddlerec.core.utils.util import shuffle_files
M
update  
malin10 已提交
27
from paddlerec.core.metric import Metric
C
Chengmo 已提交
28

F
frankwhzhang 已提交
29 30 31
logging.basicConfig(
    format='%(asctime)s - %(levelname)s: %(message)s', level=logging.INFO)

C
Chengmo 已提交
32 33 34 35 36
__all__ = [
    "RunnerBase", "SingleRunner", "PSRunner", "CollectiveRunner", "PslibRunner"
]


C
Chengmo 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
def as_numpy(tensor):
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())

    Args:
       tensor(Variable): a instance of Tensor

    Returns:
        numpy.ndarray
    """
    if isinstance(tensor, fluid.core.LoDTensorArray):
        return [as_numpy(t) for t in tensor]
    if isinstance(tensor, list):
        return [as_numpy(t) for t in tensor]
    assert isinstance(tensor, fluid.core.LoDTensor)
    lod = tensor.lod()
    # (todo) need print lod or return it for user
    if tensor._is_initialized():
        return np.array(tensor)
    else:
        return None


C
Chengmo 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85
class RunnerBase(object):
    """R
    """

    def __init__(self, context):
        pass

    def exuctor(self, context):
        pass

    def _run(self, context, model_dict):
        reader_name = model_dict["dataset_name"]
        name = "dataset." + reader_name + "."
T
tangwei 已提交
86

C
Chengmo 已提交
87
        if envs.get_global_env(name + "type") == "DataLoader":
M
update  
malin10 已提交
88
            return self._executor_dataloader_train(model_dict, context)
C
Chengmo 已提交
89 90
        else:
            self._executor_dataset_train(model_dict, context)
M
update  
malin10 已提交
91
            return None
C
Chengmo 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

    def _executor_dataset_train(self, model_dict, context):
        reader_name = model_dict["dataset_name"]
        model_name = model_dict["name"]
        model_class = context["model"][model_dict["name"]]["model"]
        fetch_vars = []
        fetch_alias = []
        fetch_period = int(
            envs.get_global_env("runner." + context["runner_name"] +
                                ".print_interval", 20))
        scope = context["model"][model_name]["scope"]
        program = context["model"][model_name]["main_program"]
        reader = context["dataset"][reader_name]

        with fluid.scope_guard(scope):
            if context["is_infer"]:
                metrics = model_class.get_infer_results()
                if metrics:
                    fetch_vars = metrics.values()
                    fetch_alias = metrics.keys()
                context["exe"].infer_from_dataset(
                    program=program,
                    dataset=reader,
                    fetch_list=fetch_vars,
                    fetch_info=fetch_alias,
X
xjqbest 已提交
117 118
                    print_period=fetch_period,
                    debug=envs.get_global_env("debug", False))
C
Chengmo 已提交
119 120 121 122 123 124 125 126 127 128 129
            else:
                metrics = model_class.get_metrics()
                if metrics:
                    fetch_vars = metrics.values()
                    fetch_alias = metrics.keys()
                with fluid.scope_guard(scope):
                    context["exe"].train_from_dataset(
                        program=program,
                        dataset=reader,
                        fetch_list=fetch_vars,
                        fetch_info=fetch_alias,
X
xjqbest 已提交
130 131
                        print_period=fetch_period,
                        debug=envs.get_global_env("debug", False))
C
Chengmo 已提交
132 133 134 135

    def _executor_dataloader_train(self, model_dict, context):
        model_name = model_dict["name"]
        model_class = context["model"][model_dict["name"]]["model"]
136
        program = self._get_dataloader_program(model_dict, context)
C
Chengmo 已提交
137 138 139 140 141 142 143 144 145 146 147

        fetch_period = int(
            envs.get_global_env("runner." + context["runner_name"] +
                                ".print_interval", 20))
        if context["is_infer"]:
            metrics = model_class.get_infer_results()
        else:
            metrics = model_class.get_metrics()

        metrics_varnames = []
        metrics_format = []
F
frankwhzhang 已提交
148 149

        if context["is_infer"]:
F
frankwhzhang 已提交
150
            metrics_format.append("\t[Infer]\t{}: {{}}".format("batch"))
F
frankwhzhang 已提交
151
        else:
F
frankwhzhang 已提交
152
            metrics_format.append("\t[Train]\t{}: {{}}".format("batch"))
F
frankwhzhang 已提交
153 154 155

        metrics_format.append("{}: {{:.2f}}s".format("time_each_interval"))

M
update  
malin10 已提交
156
        metrics_names = ["total_batch"]
F
frankwhzhang 已提交
157

C
Chengmo 已提交
158
        for name, var in metrics.items():
M
update  
malin10 已提交
159
            metrics_names.append(name)
C
Chengmo 已提交
160 161 162 163 164 165 166
            metrics_varnames.append(var.name)
            metrics_format.append("{}: {{}}".format(name))
        metrics_format = ", ".join(metrics_format)

        reader = context["model"][model_dict["name"]]["model"]._data_loader
        reader.start()
        batch_id = 0
F
frankwhzhang 已提交
167
        begin_time = time.time()
C
Chengmo 已提交
168
        scope = context["model"][model_name]["scope"]
M
update  
malin10 已提交
169
        result = None
C
Chengmo 已提交
170 171 172
        with fluid.scope_guard(scope):
            try:
                while True:
C
Chengmo 已提交
173 174 175 176
                    metrics_tensors = context["exe"].run(
                        program=program,
                        fetch_list=metrics_varnames,
                        return_numpy=False)
C
Chengmo 已提交
177

F
frankwhzhang 已提交
178 179 180 181 182 183 184
                    metrics = [batch_id]
                    metrics_rets = [
                        as_numpy(metrics_tensor)
                        for metrics_tensor in metrics_tensors
                    ]
                    metrics.extend(metrics_rets)

C
Chengmo 已提交
185
                    if batch_id % fetch_period == 0 and batch_id != 0:
F
frankwhzhang 已提交
186 187
                        end_time = time.time()
                        seconds = end_time - begin_time
F
frankwhzhang 已提交
188 189
                        metrics_logging = metrics[:]
                        metrics_logging = metrics.insert(1, seconds)
F
frankwhzhang 已提交
190 191
                        begin_time = end_time

F
frankwhzhang 已提交
192
                        logging.info(metrics_format.format(*metrics))
C
Chengmo 已提交
193 194 195 196
                    batch_id += 1
            except fluid.core.EOFException:
                reader.reset()

M
update  
malin10 已提交
197
        if batch_id > 0:
M
update  
malin10 已提交
198 199
            result = dict(zip(metrics_names, metrics))
        return result
M
update  
malin10 已提交
200

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    def _get_dataloader_program(self, model_dict, context):
        model_name = model_dict["name"]
        if context["model"][model_name]["compiled_program"] == None:
            if context["is_infer"]:
                program = context["model"][model_name]["main_program"]
            elif context["is_fleet"]:
                if context["fleet_mode"].upper() == "PS":
                    program = self._get_ps_program(model_dict, context)
                elif context["fleet_mode"].upper() == "COLLECTIVE":
                    program = context["model"][model_name]["main_program"]
            elif not context["is_fleet"]:
                if context["device"].upper() == "CPU":
                    program = self._get_single_cpu_program(model_dict, context)
                elif context["device"].upper() == "GPU":
                    program = self._get_single_gpu_program(model_dict, context)
            context["model"][model_name]["compiled_program"] = program
        return context["model"][model_name]["compiled_program"]

C
Chengmo 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232
    def _get_strategy(self, model_dict, context):
        _build_strategy = fluid.BuildStrategy()
        _exe_strategy = fluid.ExecutionStrategy()

        # 0: kCoeffNumDevice; 1: One; 2: Customized
        _gradient_scale_strategy = model_dict.get("gradient_scale_strategy", 0)
        if _gradient_scale_strategy == 0:
            gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.CoeffNumDevice
        elif _gradient_scale_strategy == 1:
            gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.One
        elif _gradient_scale_strategy == 2:
            gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.Customized
        else:
            raise ValueError(
T
tangwei 已提交
233
                "Unsupported config. gradient_scale_strategy must be one of [0, 1, 2]."
C
Chengmo 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
            )
        _build_strategy.gradient_scale_strategy = gradient_scale_strategy

        if "thread_num" in model_dict and model_dict["thread_num"] > 1:
            _build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
            _exe_strategy.num_threads = model_dict["thread_num"]
            os.environ['CPU_NUM'] = str(_exe_strategy.num_threads)

        return _exe_strategy, _build_strategy

    def _get_single_gpu_program(self, model_dict, context):
        model_name = model_dict["name"]
        return context["model"][model_name]["main_program"].clone()

    def _get_single_cpu_program(self, model_dict, context):
        model_name = model_dict["name"]
        model_class = context["model"][model_dict["name"]]["model"]
        program = context["model"][model_name]["main_program"].clone()
        _exe_strategy, _build_strategy = self._get_strategy(model_dict,
                                                            context)
M
update  
malin10 已提交
254

C
Chengmo 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
        program = fluid.compiler.CompiledProgram(program).with_data_parallel(
            loss_name=model_class.get_avg_cost().name,
            build_strategy=_build_strategy,
            exec_strategy=_exe_strategy)
        return program

    def _get_ps_program(self, model_dict, context):
        model_name = model_dict["name"]
        model_class = context["model"][model_dict["name"]]["model"]
        program = context["model"][model_name]["main_program"].clone()

        _build_strategy = context["strategy"].get_build_strategy()
        _exe_strategy = context["strategy"].get_execute_strategy()

        if "thread_num" in model_dict and model_dict["thread_num"] > 1:
            _build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
            _exe_strategy.num_threads = model_dict["thread_num"]
            os.environ['CPU_NUM'] = str(_exe_strategy.num_threads)

        _gradient_scale_strategy = model_dict.get("gradient_scale_strategy", 0)
        if _gradient_scale_strategy == 0:
            gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.CoeffNumDevice
        elif _gradient_scale_strategy == 1:
            gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.One
        elif _gradient_scale_strategy == 2:
            gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.Customized
        else:
            raise ValueError(
                "Unsurpported config. gradient_scale_strategy must be one of [0, 1, 2]."
            )
        _build_strategy.gradient_scale_strategy = gradient_scale_strategy

        program = fluid.compiler.CompiledProgram(program).with_data_parallel(
            loss_name=model_class.get_avg_cost().name,
            build_strategy=_build_strategy,
            exec_strategy=_exe_strategy)
        return program

    def save(self, epoch_id, context, is_fleet=False):
        def need_save(epoch_id, epoch_interval, is_last=False):
295 296 297 298 299
            name = "runner." + context["runner_name"] + "."
            total_epoch = int(envs.get_global_env(name + "epochs", 1))
            if epoch_id + 1 == total_epoch:
                is_last = True

C
Chengmo 已提交
300 301 302 303 304
            if is_last:
                return True
            if epoch_id == -1:
                return False

305
            return (epoch_id + 1) % epoch_interval == 0
C
Chengmo 已提交
306 307

        def save_inference_model():
C
Chengmo 已提交
308
            # get global env
C
Chengmo 已提交
309 310 311 312 313 314 315 316 317 318
            name = "runner." + context["runner_name"] + "."
            save_interval = int(
                envs.get_global_env(name + "save_inference_interval", -1))
            if not need_save(epoch_id, save_interval, False):
                return
            feed_varnames = envs.get_global_env(
                name + "save_inference_feed_varnames", [])
            fetch_varnames = envs.get_global_env(
                name + "save_inference_fetch_varnames", [])
            if feed_varnames is None or fetch_varnames is None or feed_varnames == "" or fetch_varnames == "" or \
C
Chengmo 已提交
319
                    len(feed_varnames) == 0 or len(fetch_varnames) == 0:
C
Chengmo 已提交
320
                return
C
Chengmo 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345

            # check feed var exist
            for var_name in feed_varnames:
                if var_name not in fluid.default_main_program().global_block(
                ).vars:
                    raise ValueError(
                        "Feed variable: {} not in default_main_program, global block has follow vars: {}".
                        format(var_name,
                               fluid.default_main_program().global_block()
                               .vars.keys()))

            # check fetch var exist
            fetch_vars = []
            for var_name in fetch_varnames:
                if var_name not in fluid.default_main_program().global_block(
                ).vars:
                    raise ValueError(
                        "Fetch variable: {} not in default_main_program, global block has follow vars: {}".
                        format(var_name,
                               fluid.default_main_program().global_block()
                               .vars.keys()))
                else:
                    fetch_vars.append(fluid.default_main_program()
                                      .global_block().vars[var_name])

C
Chengmo 已提交
346 347 348 349 350 351
            dirname = envs.get_global_env(name + "save_inference_path", None)

            assert dirname is not None
            dirname = os.path.join(dirname, str(epoch_id))

            if is_fleet:
C
Chengmo 已提交
352 353 354 355 356 357 358
                warnings.warn(
                    "Save inference model in cluster training is not recommended! Using save checkpoint instead.",
                    category=UserWarning,
                    stacklevel=2)
                if context["fleet"].worker_index() == 0:
                    context["fleet"].save_inference_model(
                        context["exe"], dirname, feed_varnames, fetch_vars)
C
Chengmo 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
            else:
                fluid.io.save_inference_model(dirname, feed_varnames,
                                              fetch_vars, context["exe"])

        def save_persistables():
            name = "runner." + context["runner_name"] + "."
            save_interval = int(
                envs.get_global_env(name + "save_checkpoint_interval", -1))
            if not need_save(epoch_id, save_interval, False):
                return
            dirname = envs.get_global_env(name + "save_checkpoint_path", None)
            if dirname is None or dirname == "":
                return
            dirname = os.path.join(dirname, str(epoch_id))
            if is_fleet:
C
Chengmo 已提交
374 375
                if context["fleet"].worker_index() == 0:
                    context["fleet"].save_persistables(context["exe"], dirname)
C
Chengmo 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
            else:
                fluid.io.save_persistables(context["exe"], dirname)

        save_persistables()
        save_inference_model()


class SingleRunner(RunnerBase):
    """R
    """

    def __init__(self, context):
        print("Running SingleRunner.")
        pass

    def run(self, context):
        epochs = int(
            envs.get_global_env("runner." + context["runner_name"] +
                                ".epochs"))
        for epoch in range(epochs):
T
tangwei 已提交
396
            for model_dict in context["phases"]:
M
update  
malin10 已提交
397
                model_class = context["model"][model_dict["name"]]["model"]
M
bug fix  
malin10 已提交
398
                metrics = model_class._metrics
399 400 401 402 403 404
                if "shuffle_filelist" in model_dict:
                    need_shuffle_files = model_dict.get("shuffle_filelist",
                                                        None)
                    filelist = context["file_list"]
                    context["file_list"] = shuffle_files(need_shuffle_files,
                                                         filelist)
C
Chengmo 已提交
405
                begin_time = time.time()
M
update  
malin10 已提交
406
                result = self._run(context, model_dict)
C
Chengmo 已提交
407 408
                end_time = time.time()
                seconds = end_time - begin_time
M
update  
malin10 已提交
409
                message = "epoch {} done, use time: {}".format(epoch, seconds)
M
update  
malin10 已提交
410 411 412
                metrics_result = []
                for key in metrics:
                    if isinstance(metrics[key], Metric):
M
bug fix  
malin10 已提交
413
                        _str = metrics[key].calc_global_metrics(
M
update  
malin10 已提交
414 415
                            None,
                            context["model"][model_dict["name"]]["scope"])
M
malin10 已提交
416
                        metrics_result.append(_str)
M
update  
malin10 已提交
417 418
                    elif result is not None:
                        _str = "{}={}".format(key, result[key])
M
malin10 已提交
419
                        metrics_result.append(_str)
M
update  
malin10 已提交
420 421
                if len(metrics_result) > 0:
                    message += ", global metrics: " + ", ".join(metrics_result)
M
update  
malin10 已提交
422
                print(message)
M
update  
malin10 已提交
423

C
Chengmo 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
                with fluid.scope_guard(context["model"][model_dict["name"]][
                        "scope"]):
                    train_prog = context["model"][model_dict["name"]][
                        "default_main_program"]
                    startup_prog = context["model"][model_dict["name"]][
                        "startup_program"]
                    with fluid.program_guard(train_prog, startup_prog):
                        self.save(epoch, context)
        context["status"] = "terminal_pass"


class PSRunner(RunnerBase):
    def __init__(self, context):
        print("Running PSRunner.")
        pass

    def run(self, context):
        epochs = int(
            envs.get_global_env("runner." + context["runner_name"] +
                                ".epochs"))
T
tangwei 已提交
444
        model_dict = context["env"]["phase"][0]
M
update  
malin10 已提交
445 446
        model_class = context["model"][model_dict["name"]]["model"]
        metrics = model_class._metrics
C
Chengmo 已提交
447
        for epoch in range(epochs):
448 449 450 451 452
            if "shuffle_filelist" in model_dict:
                need_shuffle_files = model_dict.get("shuffle_filelist", None)
                filelist = context["file_list"]
                context["file_list"] = shuffle_files(need_shuffle_files,
                                                     filelist)
C
Chengmo 已提交
453
            begin_time = time.time()
M
update  
malin10 已提交
454
            result = self._run(context, model_dict)
C
Chengmo 已提交
455 456
            end_time = time.time()
            seconds = end_time - begin_time
M
update  
malin10 已提交
457
            message = "epoch {} done, use time: {}".format(epoch, seconds)
M
update  
malin10 已提交
458 459 460 461 462 463 464 465

            # TODO, wait for PaddleCloudRoleMaker supports gloo
            from paddle.fluid.incubate.fleet.base.role_maker import GeneralRoleMaker
            if context["fleet"] is not None and isinstance(context["fleet"],
                                                           GeneralRoleMaker):
                metrics_result = []
                for key in metrics:
                    if isinstance(metrics[key], Metric):
M
bug fix  
malin10 已提交
466
                        _str = metrics[key].calc_global_metrics(
M
update  
malin10 已提交
467 468
                            context["fleet"],
                            context["model"][model_dict["name"]]["scope"])
M
malin10 已提交
469
                        metrics_result.append(_str)
M
update  
malin10 已提交
470 471
                    elif result is not None:
                        _str = "{}={}".format(key, result[key])
M
malin10 已提交
472
                        metrics_result.append(_str)
M
update  
malin10 已提交
473 474
                if len(metrics_result) > 0:
                    message += ", global metrics: " + ", ".join(metrics_result)
M
update  
malin10 已提交
475
            print(message)
C
Chengmo 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
            with fluid.scope_guard(context["model"][model_dict["name"]][
                    "scope"]):
                train_prog = context["model"][model_dict["name"]][
                    "main_program"]
                startup_prog = context["model"][model_dict["name"]][
                    "startup_program"]
                with fluid.program_guard(train_prog, startup_prog):
                    self.save(epoch, context, True)
        context["status"] = "terminal_pass"


class CollectiveRunner(RunnerBase):
    def __init__(self, context):
        print("Running CollectiveRunner.")
        pass

    def run(self, context):
        epochs = int(
            envs.get_global_env("runner." + context["runner_name"] +
                                ".epochs"))
T
tangwei 已提交
496
        model_dict = context["env"]["phase"][0]
C
Chengmo 已提交
497
        for epoch in range(epochs):
498 499 500 501 502
            if "shuffle_filelist" in model_dict:
                need_shuffle_files = model_dict.get("shuffle_filelist", None)
                filelist = context["file_list"]
                context["file_list"] = shuffle_files(need_shuffle_files,
                                                     filelist)
C
Chengmo 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
            begin_time = time.time()
            self._run(context, model_dict)
            end_time = time.time()
            seconds = end_time - begin_time
            print("epoch {} done, use time: {}".format(epoch, seconds))
            with fluid.scope_guard(context["model"][model_dict["name"]][
                    "scope"]):
                train_prog = context["model"][model_dict["name"]][
                    "default_main_program"]
                startup_prog = context["model"][model_dict["name"]][
                    "startup_program"]
                with fluid.program_guard(train_prog, startup_prog):
                    self.save(epoch, context, True)
        context["status"] = "terminal_pass"


class PslibRunner(RunnerBase):
    def __init__(self, context):
        print("Running PSRunner.")
        pass

    def run(self, context):
        context["fleet"].init_worker()
T
tangwei 已提交
526
        model_dict = context["env"]["phase"][0]
C
Chengmo 已提交
527 528 529 530
        epochs = int(
            envs.get_global_env("runner." + context["runner_name"] +
                                ".epochs"))
        for epoch in range(epochs):
531 532 533 534 535
            if "shuffle_filelist" in model_dict:
                need_shuffle_files = model_dict.get("shuffle_filelist", None)
                filelist = context["file_list"]
                context["file_list"] = shuffle_files(need_shuffle_files,
                                                     filelist)
C
Chengmo 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
            begin_time = time.time()
            self._run(context, model_dict)
            end_time = time.time()
            seconds = end_time - begin_time
            print("epoch {} done, use time: {}".format(epoch, seconds))
        """
        # online Training Can do more, As shown below:

        begin_day = datetime.datetime.strptime("begin_day_d", '%Y%m%d')
        days = int(
            envs.get_global_env("runner." + context["runner_name"] + ".days"))
        for day in range(days):
            for hour in range(24):
                day = begin_day + datetime.timedelta(days=day, hours=hour)
                day_s = day.strftime('%Y%m%d/%H')

T
tangwei 已提交
552
                for dataset in envs.get_global_env("dataset"):
C
Chengmo 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
                    if dataset["type"] != "DataLoader":
                        name = dataset["name"]
                        train_data_path = envs.get_global_env(name +
                                                              "data_path")
                        train_data_path = os.path.join(train_data_path, day_s)

                        file_list = [
                            os.path.join(train_data_path, x)
                            for x in os.listdir(train_data_path)
                        ]
                        context["dataset"][name].set_filelist(file_list)

                for epoch in range(epochs):
                    begin_time = time.time()
                    self._run(context, model_dict)
                    end_time = time.time()
                    seconds = end_time - begin_time
                    print("epoch {} done, use time: {}".format(epoch, seconds))
                    with fluid.scope_guard(context["model"][model_dict["name"]]
                                           ["scope"]):
                        train_prog = context["model"][model_dict["name"]][
                            "default_main_program"]
                        startup_prog = context["model"][model_dict["name"]][
                            "startup_program"]
                        with fluid.program_guard(train_prog, startup_prog):
                            self.save(epoch, context, True)

        """
        context["status"] = "terminal_pass"
582 583 584 585 586 587 588 589 590 591 592 593


class SingleInferRunner(RunnerBase):
    def __init__(self, context):
        print("Running SingleInferRunner.")
        pass

    def run(self, context):
        self._dir_check(context)

        for index, epoch_name in enumerate(self.epoch_model_name_list):
            for model_dict in context["phases"]:
M
update  
malin10 已提交
594 595
                model_class = context["model"][model_dict["name"]]["model"]
                metrics = model_class._infer_results
596 597
                self._load(context, model_dict,
                           self.epoch_model_path_list[index])
598 599 600 601 602 603
                if "shuffle_filelist" in model_dict:
                    need_shuffle_files = model_dict.get("shuffle_filelist",
                                                        None)
                    filelist = context["file_list"]
                    context["file_list"] = shuffle_files(need_shuffle_files,
                                                         filelist)
604
                begin_time = time.time()
M
update  
malin10 已提交
605
                result = self._run(context, model_dict)
606 607
                end_time = time.time()
                seconds = end_time - begin_time
M
update  
malin10 已提交
608 609
                message = "Infer {} of epoch {} done, use time: {}".format(
                    model_dict["name"], epoch_name, seconds)
M
update  
malin10 已提交
610 611 612
                metrics_result = []
                for key in metrics:
                    if isinstance(metrics[key], Metric):
M
bug fix  
malin10 已提交
613
                        _str = metrics[key].calc_global_metrics(
M
update  
malin10 已提交
614 615
                            None,
                            context["model"][model_dict["name"]]["scope"])
M
malin10 已提交
616
                        metrics_result.append(_str)
M
update  
malin10 已提交
617 618
                    elif result is not None:
                        _str = "{}={}".format(key, result[key])
M
malin10 已提交
619
                        metrics_result.append(_str)
M
update  
malin10 已提交
620 621
                if len(metrics_result) > 0:
                    message += ", global metrics: " + ", ".join(metrics_result)
M
update  
malin10 已提交
622 623
                print(message)

624 625 626 627 628 629 630 631 632 633 634 635 636 637
        context["status"] = "terminal_pass"

    def _load(self, context, model_dict, model_path):
        if model_path is None or model_path == "":
            return
        print("load persistables from", model_path)

        with fluid.scope_guard(context["model"][model_dict["name"]]["scope"]):
            train_prog = context["model"][model_dict["name"]]["main_program"]
            startup_prog = context["model"][model_dict["name"]][
                "startup_program"]
            with fluid.program_guard(train_prog, startup_prog):
                fluid.io.load_persistables(
                    context["exe"], model_path, main_program=train_prog)
M
update  
malin10 已提交
638 639 640 641
            clear_metrics = context["model"][model_dict["name"]][
                "model"].get_clear_metrics()
            for var in clear_metrics:
                var.clear()
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657

    def _dir_check(self, context):
        dirname = envs.get_global_env(
            "runner." + context["runner_name"] + ".init_model_path", None)
        self.epoch_model_path_list = []
        self.epoch_model_name_list = []

        for file in os.listdir(dirname):
            file_path = os.path.join(dirname, file)
            if os.path.isdir(file_path):
                self.epoch_model_path_list.append(file_path)
                self.epoch_model_name_list.append(file)

        if len(self.epoch_model_path_list) == 0:
            self.epoch_model_path_list.append(dirname)
            self.epoch_model_name_list.append(dirname)