runner.py 25.5 KB
Newer Older
C
Chengmo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import time
C
Chengmo 已提交
19
import warnings
20
import logging
C
Chengmo 已提交
21
import numpy as np
C
Chengmo 已提交
22
import paddle.fluid as fluid
C
Chengmo 已提交
23

C
Chengmo 已提交
24
from paddlerec.core.utils import envs
M
update  
malin10 已提交
25
from paddlerec.core.metric import Metric
C
Chengmo 已提交
26 27 28 29 30

__all__ = [
    "RunnerBase", "SingleRunner", "PSRunner", "CollectiveRunner", "PslibRunner"
]

31 32 33 34
logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)

C
Chengmo 已提交
35

C
Chengmo 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
def as_numpy(tensor):
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())

    Args:
       tensor(Variable): a instance of Tensor

    Returns:
        numpy.ndarray
    """
    if isinstance(tensor, fluid.core.LoDTensorArray):
        return [as_numpy(t) for t in tensor]
    if isinstance(tensor, list):
        return [as_numpy(t) for t in tensor]
    assert isinstance(tensor, fluid.core.LoDTensor)
    lod = tensor.lod()
    # (todo) need print lod or return it for user
    if tensor._is_initialized():
        return np.array(tensor)
    else:
        return None


C
Chengmo 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84
class RunnerBase(object):
    """R
    """

    def __init__(self, context):
        pass

    def exuctor(self, context):
        pass

    def _run(self, context, model_dict):
        reader_name = model_dict["dataset_name"]
        name = "dataset." + reader_name + "."
T
tangwei 已提交
85

C
Chengmo 已提交
86
        if envs.get_global_env(name + "type") == "DataLoader":
M
update  
malin10 已提交
87
            return self._executor_dataloader_train(model_dict, context)
C
Chengmo 已提交
88 89
        else:
            self._executor_dataset_train(model_dict, context)
M
update  
malin10 已提交
90
            return None
C
Chengmo 已提交
91 92 93 94 95

    def _executor_dataset_train(self, model_dict, context):
        reader_name = model_dict["dataset_name"]
        model_name = model_dict["name"]
        model_class = context["model"][model_dict["name"]]["model"]
96

C
Chengmo 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
        fetch_vars = []
        fetch_alias = []
        fetch_period = int(
            envs.get_global_env("runner." + context["runner_name"] +
                                ".print_interval", 20))
        scope = context["model"][model_name]["scope"]
        program = context["model"][model_name]["main_program"]
        reader = context["dataset"][reader_name]

        with fluid.scope_guard(scope):
            if context["is_infer"]:
                metrics = model_class.get_infer_results()
                if metrics:
                    fetch_vars = metrics.values()
                    fetch_alias = metrics.keys()
                context["exe"].infer_from_dataset(
                    program=program,
                    dataset=reader,
                    fetch_list=fetch_vars,
                    fetch_info=fetch_alias,
X
xjqbest 已提交
117 118
                    print_period=fetch_period,
                    debug=envs.get_global_env("debug", False))
C
Chengmo 已提交
119 120 121 122 123 124 125 126 127 128 129
            else:
                metrics = model_class.get_metrics()
                if metrics:
                    fetch_vars = metrics.values()
                    fetch_alias = metrics.keys()
                with fluid.scope_guard(scope):
                    context["exe"].train_from_dataset(
                        program=program,
                        dataset=reader,
                        fetch_list=fetch_vars,
                        fetch_info=fetch_alias,
X
xjqbest 已提交
130 131
                        print_period=fetch_period,
                        debug=envs.get_global_env("debug", False))
C
Chengmo 已提交
132 133 134 135

    def _executor_dataloader_train(self, model_dict, context):
        model_name = model_dict["name"]
        model_class = context["model"][model_dict["name"]]["model"]
136
        program = self._get_dataloader_program(model_dict, context)
C
Chengmo 已提交
137 138 139 140 141 142 143 144 145 146 147

        fetch_period = int(
            envs.get_global_env("runner." + context["runner_name"] +
                                ".print_interval", 20))
        if context["is_infer"]:
            metrics = model_class.get_infer_results()
        else:
            metrics = model_class.get_metrics()

        metrics_varnames = []
        metrics_format = []
M
update  
malin10 已提交
148
        metrics_names = ["total_batch"]
C
Chengmo 已提交
149 150
        metrics_format.append("{}: {{}}".format("batch"))
        for name, var in metrics.items():
M
update  
malin10 已提交
151
            metrics_names.append(name)
C
Chengmo 已提交
152 153 154 155 156 157 158 159
            metrics_varnames.append(var.name)
            metrics_format.append("{}: {{}}".format(name))
        metrics_format = ", ".join(metrics_format)

        reader = context["model"][model_dict["name"]]["model"]._data_loader
        reader.start()
        batch_id = 0
        scope = context["model"][model_name]["scope"]
M
update  
malin10 已提交
160
        result = None
C
Chengmo 已提交
161 162 163
        with fluid.scope_guard(scope):
            try:
                while True:
C
Chengmo 已提交
164 165 166 167
                    metrics_tensors = context["exe"].run(
                        program=program,
                        fetch_list=metrics_varnames,
                        return_numpy=False)
C
Chengmo 已提交
168
                    metrics = [batch_id]
C
Chengmo 已提交
169 170 171 172 173

                    metrics_rets = [
                        as_numpy(metrics_tensor)
                        for metrics_tensor in metrics_tensors
                    ]
C
Chengmo 已提交
174 175 176
                    metrics.extend(metrics_rets)

                    if batch_id % fetch_period == 0 and batch_id != 0:
177
                        logger.info(metrics_format.format(*metrics))
C
Chengmo 已提交
178 179 180 181
                    batch_id += 1
            except fluid.core.EOFException:
                reader.reset()

M
update  
malin10 已提交
182
        if batch_id > 0:
M
update  
malin10 已提交
183 184
            result = dict(zip(metrics_names, metrics))
        return result
M
update  
malin10 已提交
185

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    def _get_dataloader_program(self, model_dict, context):
        model_name = model_dict["name"]
        if context["model"][model_name]["compiled_program"] == None:
            if context["is_infer"]:
                program = context["model"][model_name]["main_program"]
            elif context["is_fleet"]:
                if context["fleet_mode"].upper() == "PS":
                    program = self._get_ps_program(model_dict, context)
                elif context["fleet_mode"].upper() == "COLLECTIVE":
                    program = context["model"][model_name]["main_program"]
            elif not context["is_fleet"]:
                if context["device"].upper() == "CPU":
                    program = self._get_single_cpu_program(model_dict, context)
                elif context["device"].upper() == "GPU":
                    program = self._get_single_gpu_program(model_dict, context)
            context["model"][model_name]["compiled_program"] = program
        return context["model"][model_name]["compiled_program"]

C
Chengmo 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217
    def _get_strategy(self, model_dict, context):
        _build_strategy = fluid.BuildStrategy()
        _exe_strategy = fluid.ExecutionStrategy()

        # 0: kCoeffNumDevice; 1: One; 2: Customized
        _gradient_scale_strategy = model_dict.get("gradient_scale_strategy", 0)
        if _gradient_scale_strategy == 0:
            gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.CoeffNumDevice
        elif _gradient_scale_strategy == 1:
            gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.One
        elif _gradient_scale_strategy == 2:
            gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.Customized
        else:
            raise ValueError(
T
tangwei 已提交
218
                "Unsupported config. gradient_scale_strategy must be one of [0, 1, 2]."
C
Chengmo 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
            )
        _build_strategy.gradient_scale_strategy = gradient_scale_strategy

        if "thread_num" in model_dict and model_dict["thread_num"] > 1:
            _build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
            _exe_strategy.num_threads = model_dict["thread_num"]
            os.environ['CPU_NUM'] = str(_exe_strategy.num_threads)

        return _exe_strategy, _build_strategy

    def _get_single_gpu_program(self, model_dict, context):
        model_name = model_dict["name"]
        return context["model"][model_name]["main_program"].clone()

    def _get_single_cpu_program(self, model_dict, context):
        model_name = model_dict["name"]
        model_class = context["model"][model_dict["name"]]["model"]
        program = context["model"][model_name]["main_program"].clone()
        _exe_strategy, _build_strategy = self._get_strategy(model_dict,
                                                            context)
M
update  
malin10 已提交
239

C
Chengmo 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
        program = fluid.compiler.CompiledProgram(program).with_data_parallel(
            loss_name=model_class.get_avg_cost().name,
            build_strategy=_build_strategy,
            exec_strategy=_exe_strategy)
        return program

    def _get_ps_program(self, model_dict, context):
        model_name = model_dict["name"]
        model_class = context["model"][model_dict["name"]]["model"]
        program = context["model"][model_name]["main_program"].clone()

        _build_strategy = context["strategy"].get_build_strategy()
        _exe_strategy = context["strategy"].get_execute_strategy()

        if "thread_num" in model_dict and model_dict["thread_num"] > 1:
            _build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
            _exe_strategy.num_threads = model_dict["thread_num"]
            os.environ['CPU_NUM'] = str(_exe_strategy.num_threads)

        _gradient_scale_strategy = model_dict.get("gradient_scale_strategy", 0)
        if _gradient_scale_strategy == 0:
            gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.CoeffNumDevice
        elif _gradient_scale_strategy == 1:
            gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.One
        elif _gradient_scale_strategy == 2:
            gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.Customized
        else:
            raise ValueError(
                "Unsurpported config. gradient_scale_strategy must be one of [0, 1, 2]."
            )
        _build_strategy.gradient_scale_strategy = gradient_scale_strategy

        program = fluid.compiler.CompiledProgram(program).with_data_parallel(
            loss_name=model_class.get_avg_cost().name,
            build_strategy=_build_strategy,
            exec_strategy=_exe_strategy)
        return program

    def save(self, epoch_id, context, is_fleet=False):
        def need_save(epoch_id, epoch_interval, is_last=False):
280 281 282 283 284
            name = "runner." + context["runner_name"] + "."
            total_epoch = int(envs.get_global_env(name + "epochs", 1))
            if epoch_id + 1 == total_epoch:
                is_last = True

C
Chengmo 已提交
285 286 287 288 289
            if is_last:
                return True
            if epoch_id == -1:
                return False

290
            return (epoch_id + 1) % epoch_interval == 0
C
Chengmo 已提交
291 292

        def save_inference_model():
C
Chengmo 已提交
293
            # get global env
C
Chengmo 已提交
294 295 296 297 298 299 300 301 302 303
            name = "runner." + context["runner_name"] + "."
            save_interval = int(
                envs.get_global_env(name + "save_inference_interval", -1))
            if not need_save(epoch_id, save_interval, False):
                return
            feed_varnames = envs.get_global_env(
                name + "save_inference_feed_varnames", [])
            fetch_varnames = envs.get_global_env(
                name + "save_inference_fetch_varnames", [])
            if feed_varnames is None or fetch_varnames is None or feed_varnames == "" or fetch_varnames == "" or \
C
Chengmo 已提交
304
                    len(feed_varnames) == 0 or len(fetch_varnames) == 0:
C
Chengmo 已提交
305
                return
C
Chengmo 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330

            # check feed var exist
            for var_name in feed_varnames:
                if var_name not in fluid.default_main_program().global_block(
                ).vars:
                    raise ValueError(
                        "Feed variable: {} not in default_main_program, global block has follow vars: {}".
                        format(var_name,
                               fluid.default_main_program().global_block()
                               .vars.keys()))

            # check fetch var exist
            fetch_vars = []
            for var_name in fetch_varnames:
                if var_name not in fluid.default_main_program().global_block(
                ).vars:
                    raise ValueError(
                        "Fetch variable: {} not in default_main_program, global block has follow vars: {}".
                        format(var_name,
                               fluid.default_main_program().global_block()
                               .vars.keys()))
                else:
                    fetch_vars.append(fluid.default_main_program()
                                      .global_block().vars[var_name])

C
Chengmo 已提交
331 332 333 334 335 336
            dirname = envs.get_global_env(name + "save_inference_path", None)

            assert dirname is not None
            dirname = os.path.join(dirname, str(epoch_id))

            if is_fleet:
C
Chengmo 已提交
337 338 339 340 341 342 343
                warnings.warn(
                    "Save inference model in cluster training is not recommended! Using save checkpoint instead.",
                    category=UserWarning,
                    stacklevel=2)
                if context["fleet"].worker_index() == 0:
                    context["fleet"].save_inference_model(
                        context["exe"], dirname, feed_varnames, fetch_vars)
C
Chengmo 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
            else:
                fluid.io.save_inference_model(dirname, feed_varnames,
                                              fetch_vars, context["exe"])

        def save_persistables():
            name = "runner." + context["runner_name"] + "."
            save_interval = int(
                envs.get_global_env(name + "save_checkpoint_interval", -1))
            if not need_save(epoch_id, save_interval, False):
                return
            dirname = envs.get_global_env(name + "save_checkpoint_path", None)
            if dirname is None or dirname == "":
                return
            dirname = os.path.join(dirname, str(epoch_id))
            if is_fleet:
C
Chengmo 已提交
359 360
                if context["fleet"].worker_index() == 0:
                    context["fleet"].save_persistables(context["exe"], dirname)
C
Chengmo 已提交
361 362 363 364 365 366 367 368 369 370 371 372
            else:
                fluid.io.save_persistables(context["exe"], dirname)

        save_persistables()
        save_inference_model()


class SingleRunner(RunnerBase):
    """R
    """

    def __init__(self, context):
373
        logger.info("Running SingleRunner.")
C
Chengmo 已提交
374 375 376 377 378 379 380
        pass

    def run(self, context):
        epochs = int(
            envs.get_global_env("runner." + context["runner_name"] +
                                ".epochs"))
        for epoch in range(epochs):
T
tangwei 已提交
381
            for model_dict in context["phases"]:
M
update  
malin10 已提交
382
                model_class = context["model"][model_dict["name"]]["model"]
M
bug fix  
malin10 已提交
383
                metrics = model_class._metrics
M
update  
malin10 已提交
384

C
Chengmo 已提交
385
                begin_time = time.time()
M
update  
malin10 已提交
386
                result = self._run(context, model_dict)
C
Chengmo 已提交
387 388
                end_time = time.time()
                seconds = end_time - begin_time
389
                message = "epoch {} done, use time: {}s".format(epoch, seconds)
M
update  
malin10 已提交
390 391 392
                metrics_result = []
                for key in metrics:
                    if isinstance(metrics[key], Metric):
M
bug fix  
malin10 已提交
393
                        _str = metrics[key].calc_global_metrics(
M
update  
malin10 已提交
394 395
                            None,
                            context["model"][model_dict["name"]]["scope"])
M
malin10 已提交
396
                        metrics_result.append(_str)
M
update  
malin10 已提交
397 398
                    elif result is not None:
                        _str = "{}={}".format(key, result[key])
M
malin10 已提交
399
                        metrics_result.append(_str)
M
update  
malin10 已提交
400 401
                if len(metrics_result) > 0:
                    message += ", global metrics: " + ", ".join(metrics_result)
402
                logger.info(message)
M
update  
malin10 已提交
403

C
Chengmo 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416
                with fluid.scope_guard(context["model"][model_dict["name"]][
                        "scope"]):
                    train_prog = context["model"][model_dict["name"]][
                        "default_main_program"]
                    startup_prog = context["model"][model_dict["name"]][
                        "startup_program"]
                    with fluid.program_guard(train_prog, startup_prog):
                        self.save(epoch, context)
        context["status"] = "terminal_pass"


class PSRunner(RunnerBase):
    def __init__(self, context):
417
        logger.info("Running PSRunner.")
C
Chengmo 已提交
418 419 420 421 422 423
        pass

    def run(self, context):
        epochs = int(
            envs.get_global_env("runner." + context["runner_name"] +
                                ".epochs"))
T
tangwei 已提交
424
        model_dict = context["env"]["phase"][0]
M
update  
malin10 已提交
425 426
        model_class = context["model"][model_dict["name"]]["model"]
        metrics = model_class._metrics
C
Chengmo 已提交
427 428
        for epoch in range(epochs):
            begin_time = time.time()
M
update  
malin10 已提交
429
            result = self._run(context, model_dict)
C
Chengmo 已提交
430 431
            end_time = time.time()
            seconds = end_time - begin_time
432
            message = "epoch {} done, use time: {}s".format(epoch, seconds)
M
update  
malin10 已提交
433 434 435 436 437 438 439 440

            # TODO, wait for PaddleCloudRoleMaker supports gloo
            from paddle.fluid.incubate.fleet.base.role_maker import GeneralRoleMaker
            if context["fleet"] is not None and isinstance(context["fleet"],
                                                           GeneralRoleMaker):
                metrics_result = []
                for key in metrics:
                    if isinstance(metrics[key], Metric):
M
bug fix  
malin10 已提交
441
                        _str = metrics[key].calc_global_metrics(
M
update  
malin10 已提交
442 443
                            context["fleet"],
                            context["model"][model_dict["name"]]["scope"])
M
malin10 已提交
444
                        metrics_result.append(_str)
M
update  
malin10 已提交
445 446
                    elif result is not None:
                        _str = "{}={}".format(key, result[key])
M
malin10 已提交
447
                        metrics_result.append(_str)
M
update  
malin10 已提交
448 449
                if len(metrics_result) > 0:
                    message += ", global metrics: " + ", ".join(metrics_result)
450
            logger.info(message)
C
Chengmo 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463
            with fluid.scope_guard(context["model"][model_dict["name"]][
                    "scope"]):
                train_prog = context["model"][model_dict["name"]][
                    "main_program"]
                startup_prog = context["model"][model_dict["name"]][
                    "startup_program"]
                with fluid.program_guard(train_prog, startup_prog):
                    self.save(epoch, context, True)
        context["status"] = "terminal_pass"


class CollectiveRunner(RunnerBase):
    def __init__(self, context):
464
        logger.info("Running CollectiveRunner.")
C
Chengmo 已提交
465 466 467 468 469 470
        pass

    def run(self, context):
        epochs = int(
            envs.get_global_env("runner." + context["runner_name"] +
                                ".epochs"))
T
tangwei 已提交
471
        model_dict = context["env"]["phase"][0]
C
Chengmo 已提交
472 473 474 475 476
        for epoch in range(epochs):
            begin_time = time.time()
            self._run(context, model_dict)
            end_time = time.time()
            seconds = end_time - begin_time
477
            logger.info("epoch {} done, use time: {}s".format(epoch, seconds))
C
Chengmo 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490
            with fluid.scope_guard(context["model"][model_dict["name"]][
                    "scope"]):
                train_prog = context["model"][model_dict["name"]][
                    "default_main_program"]
                startup_prog = context["model"][model_dict["name"]][
                    "startup_program"]
                with fluid.program_guard(train_prog, startup_prog):
                    self.save(epoch, context, True)
        context["status"] = "terminal_pass"


class PslibRunner(RunnerBase):
    def __init__(self, context):
491
        logger.info("Running PSRunner.")
C
Chengmo 已提交
492 493 494 495
        pass

    def run(self, context):
        context["fleet"].init_worker()
T
tangwei 已提交
496
        model_dict = context["env"]["phase"][0]
C
Chengmo 已提交
497 498 499 500 501 502 503 504
        epochs = int(
            envs.get_global_env("runner." + context["runner_name"] +
                                ".epochs"))
        for epoch in range(epochs):
            begin_time = time.time()
            self._run(context, model_dict)
            end_time = time.time()
            seconds = end_time - begin_time
505
            logger.info("epoch {} done, use time: {}s".format(epoch, seconds))
C
Chengmo 已提交
506 507 508 509 510 511 512 513 514 515 516
        """
        # online Training Can do more, As shown below:

        begin_day = datetime.datetime.strptime("begin_day_d", '%Y%m%d')
        days = int(
            envs.get_global_env("runner." + context["runner_name"] + ".days"))
        for day in range(days):
            for hour in range(24):
                day = begin_day + datetime.timedelta(days=day, hours=hour)
                day_s = day.strftime('%Y%m%d/%H')

T
tangwei 已提交
517
                for dataset in envs.get_global_env("dataset"):
C
Chengmo 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
                    if dataset["type"] != "DataLoader":
                        name = dataset["name"]
                        train_data_path = envs.get_global_env(name +
                                                              "data_path")
                        train_data_path = os.path.join(train_data_path, day_s)

                        file_list = [
                            os.path.join(train_data_path, x)
                            for x in os.listdir(train_data_path)
                        ]
                        context["dataset"][name].set_filelist(file_list)

                for epoch in range(epochs):
                    begin_time = time.time()
                    self._run(context, model_dict)
                    end_time = time.time()
                    seconds = end_time - begin_time
535
                    logger.info("epoch {} done, use time: {}".format(epoch, seconds))
C
Chengmo 已提交
536 537 538 539 540 541 542 543 544 545 546
                    with fluid.scope_guard(context["model"][model_dict["name"]]
                                           ["scope"]):
                        train_prog = context["model"][model_dict["name"]][
                            "default_main_program"]
                        startup_prog = context["model"][model_dict["name"]][
                            "startup_program"]
                        with fluid.program_guard(train_prog, startup_prog):
                            self.save(epoch, context, True)

        """
        context["status"] = "terminal_pass"
547 548 549 550


class SingleInferRunner(RunnerBase):
    def __init__(self, context):
551
        logger.info("Running SingleInferRunner.")
552 553 554 555 556 557 558
        pass

    def run(self, context):
        self._dir_check(context)

        for index, epoch_name in enumerate(self.epoch_model_name_list):
            for model_dict in context["phases"]:
M
update  
malin10 已提交
559 560
                model_class = context["model"][model_dict["name"]]["model"]
                metrics = model_class._infer_results
561 562 563
                self._load(context, model_dict,
                           self.epoch_model_path_list[index])
                begin_time = time.time()
M
update  
malin10 已提交
564
                result = self._run(context, model_dict)
565 566
                end_time = time.time()
                seconds = end_time - begin_time
567
                message = "Infer {} of epoch {} done, use time: {}s".format(
M
update  
malin10 已提交
568
                    model_dict["name"], epoch_name, seconds)
M
update  
malin10 已提交
569 570 571
                metrics_result = []
                for key in metrics:
                    if isinstance(metrics[key], Metric):
M
bug fix  
malin10 已提交
572
                        _str = metrics[key].calc_global_metrics(
M
update  
malin10 已提交
573 574
                            None,
                            context["model"][model_dict["name"]]["scope"])
M
malin10 已提交
575
                        metrics_result.append(_str)
M
update  
malin10 已提交
576 577
                    elif result is not None:
                        _str = "{}={}".format(key, result[key])
M
malin10 已提交
578
                        metrics_result.append(_str)
M
update  
malin10 已提交
579 580
                if len(metrics_result) > 0:
                    message += ", global metrics: " + ", ".join(metrics_result)
581
                logger.info(message)
M
update  
malin10 已提交
582

583 584 585 586 587
        context["status"] = "terminal_pass"

    def _load(self, context, model_dict, model_path):
        if model_path is None or model_path == "":
            return
L
liuyuhui 已提交
588
        logger.info("load persistables from {}".format(model_path))
589 590 591 592 593 594 595 596

        with fluid.scope_guard(context["model"][model_dict["name"]]["scope"]):
            train_prog = context["model"][model_dict["name"]]["main_program"]
            startup_prog = context["model"][model_dict["name"]][
                "startup_program"]
            with fluid.program_guard(train_prog, startup_prog):
                fluid.io.load_persistables(
                    context["exe"], model_path, main_program=train_prog)
M
update  
malin10 已提交
597 598 599 600
            clear_metrics = context["model"][model_dict["name"]][
                "model"].get_clear_metrics()
            for var in clear_metrics:
                var.clear()
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616

    def _dir_check(self, context):
        dirname = envs.get_global_env(
            "runner." + context["runner_name"] + ".init_model_path", None)
        self.epoch_model_path_list = []
        self.epoch_model_name_list = []

        for file in os.listdir(dirname):
            file_path = os.path.join(dirname, file)
            if os.path.isdir(file_path):
                self.epoch_model_path_list.append(file_path)
                self.epoch_model_name_list.append(file)

        if len(self.epoch_model_path_list) == 0:
            self.epoch_model_path_list.append(dirname)
            self.epoch_model_name_list.append(dirname)