local_cluster.py 7.2 KB
Newer Older
T
tangwei 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
T
tangwei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
from __future__ import unicode_literals
T
tangwei 已提交
17

T
tangwei 已提交
18
import copy
T
tangwei 已提交
19 20 21
import os
import sys
import subprocess
22
import logging
T
tangwei 已提交
23

24 25
from paddlerec.core.engine.engine import Engine
from paddlerec.core.utils import envs
26 27 28 29
import paddlerec.core.engine.cluster_utils as cluster_utils

logger = logging.getLogger("root")
logger.propagate = False
T
tangwei 已提交
30 31 32 33


class LocalClusterEngine(Engine):
    def start_procs(self):
C
Chengmo 已提交
34
        fleet_mode = self.envs["fleet_mode"]
T
tangwei 已提交
35 36
        worker_num = self.envs["worker_num"]
        server_num = self.envs["server_num"]
C
chengmo 已提交
37
        ports = [self.envs["start_port"]]
T
tangwei 已提交
38
        logs_dir = self.envs["log_dir"]
J
Jinhua Liang 已提交
39

T
tangwei 已提交
40 41 42 43 44 45 46
        default_env = os.environ.copy()
        current_env = copy.copy(default_env)
        current_env["CLUSTER_INSTANCE"] = "1"
        current_env.pop("http_proxy", None)
        current_env.pop("https_proxy", None)
        procs = []
        log_fns = []
C
chengmo 已提交
47

C
Chengmo 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
        if fleet_mode.upper() == "PS":
            for i in range(server_num - 1):
                while True:
                    new_port = envs.find_free_port()
                    if new_port not in ports:
                        ports.append(new_port)
                        break
            user_endpoints = ",".join(["127.0.0.1:" + str(x) for x in ports])

            user_endpoints_ips = [
                x.split(":")[0] for x in user_endpoints.split(",")
            ]
            user_endpoints_port = [
                x.split(":")[1] for x in user_endpoints.split(",")
            ]

            factory = "paddlerec.core.factory"
            cmd = [sys.executable, "-u", "-m", factory, self.trainer]

            for i in range(server_num):
                current_env.update({
                    "PADDLE_PSERVERS_IP_PORT_LIST": user_endpoints,
                    "PADDLE_PORT": user_endpoints_port[i],
                    "TRAINING_ROLE": "PSERVER",
                    "PADDLE_TRAINERS_NUM": str(worker_num),
                    "POD_IP": user_endpoints_ips[i]
                })

                os.system("mkdir -p {}".format(logs_dir))
                fn = open("%s/server.%d" % (logs_dir, i), "w")
                log_fns.append(fn)
                proc = subprocess.Popen(
                    cmd,
                    env=current_env,
                    stdout=fn,
                    stderr=fn,
                    cwd=os.getcwd())
                procs.append(proc)

            for i in range(worker_num):
                current_env.update({
                    "PADDLE_PSERVERS_IP_PORT_LIST": user_endpoints,
                    "PADDLE_TRAINERS_NUM": str(worker_num),
                    "TRAINING_ROLE": "TRAINER",
                    "PADDLE_TRAINER_ID": str(i)
                })

                os.system("mkdir -p {}".format(logs_dir))
                fn = open("%s/worker.%d" % (logs_dir, i), "w")
                log_fns.append(fn)
                proc = subprocess.Popen(
                    cmd,
                    env=current_env,
                    stdout=fn,
                    stderr=fn,
                    cwd=os.getcwd())
                procs.append(proc)
105

C
Chengmo 已提交
106
        elif fleet_mode.upper() == "COLLECTIVE":
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
            cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES")
            if cuda_visible_devices is None or cuda_visible_devices == "":
                selected_gpus = [
                    x.strip() for x in self.envs["selected_gpus"].split(",")
                ]
            else:
                # change selected_gpus into relative values
                # e.g. CUDA_VISIBLE_DEVICES=4,5,6,7; args.selected_gpus=4,5,6,7;
                # therefore selected_gpus=0,1,2,3
                cuda_visible_devices_list = cuda_visible_devices.split(',')
                for x in self.envs["selected_gpus"].split(","):
                    assert x in cuda_visible_devices_list, "Can't find "\
                    "your selected_gpus %s in CUDA_VISIBLE_DEVICES[%s]."\
                    % (x, cuda_visible_devices)
                selected_gpus = [
                    cuda_visible_devices_list.index(x.strip())
                    for x in self.envs["selected_gpus"].split(",")
                ]
C
Chengmo 已提交
125 126 127 128 129
            selected_gpus_num = len(selected_gpus)

            factory = "paddlerec.core.factory"
            cmd = [sys.executable, "-u", "-m", factory, self.trainer]

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
            print("use_paddlecloud_flag:{}".format(
                cluster_utils.use_paddlecloud()))
            if cluster_utils.use_paddlecloud():
                cluster, pod = cluster_utils.get_cloud_cluster(selected_gpus)
                logger.info("get cluster from cloud:{}".format(cluster))
                procs = cluster_utils.start_local_trainers(
                    cluster, pod, cmd, log_dir=logs_dir)

            else:
                # trainers_num = 1 or not use paddlecloud ips="a,b"
                for i in range(selected_gpus_num - 1):
                    while True:
                        new_port = envs.find_free_port()
                        if new_port not in ports:
                            ports.append(new_port)
                            break
                user_endpoints = ",".join(
                    ["127.0.0.1:" + str(x) for x in ports])
                for i in range(selected_gpus_num):
                    current_env.update({
                        "PADDLE_TRAINER_ENDPOINTS": user_endpoints,
                        "PADDLE_CURRENT_ENDPOINTS": user_endpoints[i],
                        "PADDLE_TRAINERS_NUM": str(worker_num),
                        "TRAINING_ROLE": "TRAINER",
                        "PADDLE_TRAINER_ID": str(i),
                        "FLAGS_selected_gpus": str(selected_gpus[i]),
                        "PADDLEREC_GPU_NUMS": str(selected_gpus_num)
                    })

                    os.system("mkdir -p {}".format(logs_dir))
                    fn = open("%s/worker.%d" % (logs_dir, i), "w")
                    log_fns.append(fn)
                    proc = subprocess.Popen(
                        cmd,
                        env=current_env,
                        stdout=fn,
                        stderr=fn,
                        cwd=os.getcwd())
                    procs.append(proc)
T
tangwei 已提交
169

J
Jinhua Liang 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
        # only wait worker to finish here
        for i, proc in enumerate(procs):
            if i < server_num:
                continue
            procs[i].wait()
            if len(log_fns) > 0:
                log_fns[i].close()

        for i in range(server_num):
            if len(log_fns) > 0:
                log_fns[i].close()
            procs[i].terminate()
        print(
            "all workers already completed, you can view logs under the `{}` directory".
            format(logs_dir),
            file=sys.stderr)

187 188
    def run(self):
        self.start_procs()