未验证 提交 a4bd3a69 编写于 作者: L liuyuhui 提交者: GitHub

fix selected_gpus bug for local_cluster (#205)

* fix selected_gpus bug for local_cluster

* fix bugs about single machine multicards training for local_cluster

* fix python -m config.yaml -b backend.yaml

* re add selected_gpus_num config for single train mode

* fix bug for submit for paddlecloud k8s
Co-authored-by: Nwuzhihua <35824027+fuyinno4@users.noreply.github.com>
上级 6bfbcaa9
......@@ -19,10 +19,16 @@ import copy
import os
import subprocess
import warnings
import sys
import logging
from paddlerec.core.engine.engine import Engine
from paddlerec.core.factory import TrainerFactory
from paddlerec.core.utils import envs
import paddlerec.core.engine.cluster_utils as cluster_utils
logger = logging.getLogger("root")
logger.propagate = False
class ClusterEngine(Engine):
......@@ -47,8 +53,38 @@ class ClusterEngine(Engine):
self.backend))
def start_worker_procs(self):
trainer = TrainerFactory.create(self.trainer)
trainer.run()
if (envs.get_runtime_environ("fleet_mode") == "COLLECTIVE"):
#trainer_ports = os.getenv("TRAINER_PORTS", None).split(",")
cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES")
if cuda_visible_devices is None or cuda_visible_devices == "":
selected_gpus = range(int(os.getenv("TRAINER_GPU_CARD_COUNT")))
else:
# change selected_gpus into relative values
# e.g. CUDA_VISIBLE_DEVICES=4,5,6,7; args.selected_gpus=4,5,6,7;
# therefore selected_gpus=0,1,2,3
cuda_visible_devices_list = cuda_visible_devices.split(',')
for x in range(int(os.getenv("TRAINER_GPU_CARD_COUNT"))):
assert x in cuda_visible_devices_list, "Can't find "\
"your selected_gpus %s in CUDA_VISIBLE_DEVICES[%s]."\
% (x, cuda_visible_devices)
selected_gpus = [cuda_visible_devices_list.index(x)]
print("selected_gpus:{}".format(selected_gpus))
factory = "paddlerec.core.factory"
cmd = [sys.executable, "-u", "-m", factory, self.trainer]
logs_dir = envs.get_runtime_environ("log_dir")
print("use_paddlecloud_flag:{}".format(
cluster_utils.use_paddlecloud()))
if cluster_utils.use_paddlecloud():
cluster, pod = cluster_utils.get_cloud_cluster(selected_gpus)
logger.info("get cluster from cloud:{}".format(cluster))
procs = cluster_utils.start_local_trainers(
cluster, pod, cmd, log_dir=logs_dir)
print("cluster:{}".format(cluster))
print("pod:{}".format(pod))
else:
trainer = TrainerFactory.create(self.trainer)
trainer.run()
def start_master_procs(self):
if self.backend == "PADDLECLOUD":
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import logging
import socket
import time
import os
import signal
import copy
import sys
import subprocess
from contextlib import closing
import socket
logger = logging.getLogger("root")
logger.propagate = False
class Cluster(object):
def __init__(self, hdfs):
self.job_server = None
self.pods = []
self.hdfs = None
self.job_stage_flag = None
def __str__(self):
return "job_server:{} pods:{} job_stage_flag:{} hdfs:{}".format(
self.job_server, [str(pod) for pod in self.pods],
self.job_stage_flag, self.hdfs)
def __eq__(self, cluster):
if len(self.pods) != len(cluster.pods):
return False
for a, b in zip(self.pods, cluster.pods):
if a != b:
return False
if self.job_stage_flag != cluster.job_stage_flag:
return False
return True
def __ne__(self, cluster):
return not self.__eq__(cluster)
def update_pods(cluster):
self.pods = copy.copy(cluster.pods)
def trainers_nranks(self):
return len(self.trainers_endpoints())
def pods_nranks(self):
return len(self.pods)
def trainers_endpoints(self):
r = []
for pod in self.pods:
for t in pod.trainers:
r.append(t.endpoint)
return r
def pods_endpoints(self):
r = []
for pod in self.pods:
ep = "{}:{}".format(pod.addr, pod.port)
assert pod.port != None and pod.addr != None, "{} not a valid endpoint".format(
ep)
r.append(ep)
return r
def get_pod_by_id(self, pod_id):
for pod in self.pods:
if str(pod_id) == str(pod.id):
return pod
return None
class JobServer(object):
def __init__(self):
self.endpoint = None
def __str__(self):
return "{}".format(self.endpoint)
def __eq__(self, j):
return self.endpint == j.endpoint
def __ne__(self, j):
return not self == j
class Trainer(object):
def __init__(self):
self.gpus = []
self.endpoint = None
self.rank = None
def __str__(self):
return "gpu:{} endpoint:{} rank:{}".format(self.gpus, self.endpoint,
self.rank)
def __eq__(self, t):
if len(self.gpus) != len(t.gpus):
return False
if self.endpoint != t.endpoint or \
self.rank != t.rank:
return False
for a, b in zip(self.gpus, t.gpus):
if a != b:
return False
return True
def __ne__(self, t):
return not self == t
def rank(self):
return self.rank
class Pod(object):
def __init__(self):
self.rank = None
self.id = None
self.addr = None
self.port = None
self.trainers = []
self.gpus = []
def __str__(self):
return "rank:{} id:{} addr:{} port:{} visible_gpu:{} trainers:{}".format(
self.rank, self.id, self.addr, self.port, self.gpus,
[str(t) for t in self.trainers])
def __eq__(self, pod):
if self.rank != pod.rank or \
self.id != pod.id or \
self.addr != pod.addr or \
self.port != pod.port:
logger.debug("pod {} != pod".format(self, pod))
return False
if len(self.trainers) != len(pod.trainers):
logger.debug("trainers {} != {}".format(self.trainers,
pod.trainers))
return False
for i in range(len(self.trainers)):
if self.trainers[i] != pod.trainers[i]:
logger.debug("trainer {} != {}".format(self.trainers[i],
pod.trainers[i]))
return False
return True
def __ne__(self, pod):
return not self == pod
def parse_response(self, res_pods):
pass
def rank(self):
return self.rank
def get_visible_gpus(self):
r = ""
for g in self.gpus:
r += "{},".format(g)
assert r != "", "this pod {} can't see any gpus".format(self)
r = r[:-1]
return r
def get_cluster(node_ips, node_ip, paddle_ports, selected_gpus):
assert type(paddle_ports) is list, "paddle_ports must be list"
cluster = Cluster(hdfs=None)
trainer_rank = 0
for node_rank, ip in enumerate(node_ips):
pod = Pod()
pod.rank = node_rank
pod.addr = ip
for i in range(len(selected_gpus)):
trainer = Trainer()
trainer.gpus.append(selected_gpus[i])
trainer.endpoint = "%s:%d" % (ip, paddle_ports[i])
trainer.rank = trainer_rank
trainer_rank += 1
pod.trainers.append(trainer)
cluster.pods.append(pod)
pod_rank = node_ips.index(node_ip)
return cluster, cluster.pods[pod_rank]
def get_cloud_cluster(selected_gpus, args_port=None):
#you can automatically get ip info while using paddlecloud multi nodes mode.
node_ips = os.getenv("PADDLE_TRAINERS")
assert node_ips is not None, "PADDLE_TRAINERS should not be None"
print("node_ips:{}".format(node_ips))
node_ip = os.getenv("POD_IP")
assert node_ip is not None, "POD_IP should not be None"
print("node_ip:{}".format(node_ip))
node_rank = os.getenv("PADDLE_TRAINER_ID")
assert node_rank is not None, "PADDLE_TRAINER_ID should not be None"
print("node_rank:{}".format(node_rank))
node_ips = node_ips.split(",")
num_nodes = len(node_ips)
node_rank = int(node_rank)
started_port = args_port
print("num_nodes:", num_nodes)
if num_nodes > 1:
try:
paddle_port = int(os.getenv("PADDLE_PORT", ""))
paddle_port_num = int(os.getenv("TRAINER_PORTS_NUM", ""))
if paddle_port_num >= len(
selected_gpus) and paddle_port != args_port:
logger.warning("Use Cloud specified port:{}.".format(
paddle_port))
started_port = paddle_port
except Exception as e:
print(e)
pass
if started_port is None:
started_port = 6170
logger.debug("parsed from args:node_ips:{} \
node_ip:{} node_rank:{} started_port:{}"
.format(node_ips, node_ip, node_rank, started_port))
ports = [x for x in range(started_port, started_port + len(selected_gpus))]
cluster, pod = get_cluster(node_ips, node_ip, ports, selected_gpus)
return cluster, cluster.pods[node_rank]
def use_paddlecloud():
node_ips = os.getenv("PADDLE_TRAINERS", None)
node_ip = os.getenv("POD_IP", None)
node_rank = os.getenv("PADDLE_TRAINER_ID", None)
if node_ips is None or node_ip is None or node_rank is None:
return False
else:
return True
class TrainerProc(object):
def __init__(self):
self.proc = None
self.log_fn = None
self.log_offset = None
self.rank = None
self.local_rank = None
self.cmd = None
def start_local_trainers(cluster, pod, cmd, log_dir=None):
current_env = copy.copy(os.environ.copy())
#paddle broadcast ncclUniqueId use socket, and
#proxy maybe make trainers unreachable, so delete them.
#if we set them to "", grpc will log error message "bad uri"
#so just delete them.
current_env.pop("http_proxy", None)
current_env.pop("https_proxy", None)
procs = []
for idx, t in enumerate(pod.trainers):
proc_env = {
"FLAGS_selected_gpus": "%s" % ",".join([str(g) for g in t.gpus]),
"PADDLE_TRAINER_ID": "%d" % t.rank,
"PADDLE_CURRENT_ENDPOINT": "%s" % t.endpoint,
"PADDLE_TRAINERS_NUM": "%d" % cluster.trainers_nranks(),
"PADDLE_TRAINER_ENDPOINTS": ",".join(cluster.trainers_endpoints())
}
current_env.update(proc_env)
logger.debug("trainer proc env:{}".format(current_env))
# cmd = [sys.executable, "-u", training_script]
logger.info("start trainer proc:{} env:{}".format(cmd, proc_env))
fn = None
if log_dir is not None:
os.system("mkdir -p {}".format(log_dir))
fn = open("%s/workerlog.%d" % (log_dir, idx), "a")
proc = subprocess.Popen(cmd, env=current_env, stdout=fn, stderr=fn)
else:
proc = subprocess.Popen(cmd, env=current_env)
tp = TrainerProc()
tp.proc = proc
tp.rank = t.rank
tp.local_rank = idx
tp.log_fn = fn
tp.log_offset = fn.tell() if fn else None
tp.cmd = cmd
procs.append(proc)
return procs
......@@ -19,9 +19,14 @@ import copy
import os
import sys
import subprocess
import logging
from paddlerec.core.engine.engine import Engine
from paddlerec.core.utils import envs
import paddlerec.core.engine.cluster_utils as cluster_utils
logger = logging.getLogger("root")
logger.propagate = False
class LocalClusterEngine(Engine):
......@@ -97,42 +102,70 @@ class LocalClusterEngine(Engine):
stderr=fn,
cwd=os.getcwd())
procs.append(proc)
elif fleet_mode.upper() == "COLLECTIVE":
selected_gpus = self.envs["selected_gpus"].split(",")
cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES")
if cuda_visible_devices is None or cuda_visible_devices == "":
selected_gpus = [
x.strip() for x in self.envs["selected_gpus"].split(",")
]
else:
# change selected_gpus into relative values
# e.g. CUDA_VISIBLE_DEVICES=4,5,6,7; args.selected_gpus=4,5,6,7;
# therefore selected_gpus=0,1,2,3
cuda_visible_devices_list = cuda_visible_devices.split(',')
for x in self.envs["selected_gpus"].split(","):
assert x in cuda_visible_devices_list, "Can't find "\
"your selected_gpus %s in CUDA_VISIBLE_DEVICES[%s]."\
% (x, cuda_visible_devices)
selected_gpus = [
cuda_visible_devices_list.index(x.strip())
for x in self.envs["selected_gpus"].split(",")
]
selected_gpus_num = len(selected_gpus)
for i in range(selected_gpus_num - 1):
while True:
new_port = envs.find_free_port()
if new_port not in ports:
ports.append(new_port)
break
user_endpoints = ",".join(["127.0.0.1:" + str(x) for x in ports])
factory = "paddlerec.core.factory"
cmd = [sys.executable, "-u", "-m", factory, self.trainer]
for i in range(selected_gpus_num):
current_env.update({
"PADDLE_TRAINER_ENDPOINTS": user_endpoints,
"PADDLE_CURRENT_ENDPOINTS": user_endpoints[i],
"PADDLE_TRAINERS_NUM": str(worker_num),
"TRAINING_ROLE": "TRAINER",
"PADDLE_TRAINER_ID": str(i),
"FLAGS_selected_gpus": str(selected_gpus[i]),
"PADDLEREC_GPU_NUMS": str(selected_gpus_num)
})
os.system("mkdir -p {}".format(logs_dir))
fn = open("%s/worker.%d" % (logs_dir, i), "w")
log_fns.append(fn)
proc = subprocess.Popen(
cmd,
env=current_env,
stdout=fn,
stderr=fn,
cwd=os.getcwd())
procs.append(proc)
print("use_paddlecloud_flag:{}".format(
cluster_utils.use_paddlecloud()))
if cluster_utils.use_paddlecloud():
cluster, pod = cluster_utils.get_cloud_cluster(selected_gpus)
logger.info("get cluster from cloud:{}".format(cluster))
procs = cluster_utils.start_local_trainers(
cluster, pod, cmd, log_dir=logs_dir)
else:
# trainers_num = 1 or not use paddlecloud ips="a,b"
for i in range(selected_gpus_num - 1):
while True:
new_port = envs.find_free_port()
if new_port not in ports:
ports.append(new_port)
break
user_endpoints = ",".join(
["127.0.0.1:" + str(x) for x in ports])
for i in range(selected_gpus_num):
current_env.update({
"PADDLE_TRAINER_ENDPOINTS": user_endpoints,
"PADDLE_CURRENT_ENDPOINTS": user_endpoints[i],
"PADDLE_TRAINERS_NUM": str(worker_num),
"TRAINING_ROLE": "TRAINER",
"PADDLE_TRAINER_ID": str(i),
"FLAGS_selected_gpus": str(selected_gpus[i]),
"PADDLEREC_GPU_NUMS": str(selected_gpus_num)
})
os.system("mkdir -p {}".format(logs_dir))
fn = open("%s/worker.%d" % (logs_dir, i), "w")
log_fns.append(fn)
proc = subprocess.Popen(
cmd,
env=current_env,
stdout=fn,
stderr=fn,
cwd=os.getcwd())
procs.append(proc)
# only wait worker to finish here
for i, proc in enumerate(procs):
......
......@@ -348,6 +348,7 @@ def cluster_engine(args):
cluster_envs["fleet_mode"] = fleet_mode
cluster_envs["engine_role"] = "WORKER"
cluster_envs["log_dir"] = "logs"
cluster_envs["train.trainer.trainer"] = trainer
cluster_envs["train.trainer.engine"] = "cluster"
cluster_envs["train.trainer.executor_mode"] = executor_mode
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册