runner.py 24.5 KB
Newer Older
C
Chengmo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import time
C
Chengmo 已提交
19
import numpy as np
F
frankwhzhang 已提交
20
import logging
C
Chengmo 已提交
21
import paddle.fluid as fluid
C
Chengmo 已提交
22

C
Chengmo 已提交
23
from paddlerec.core.utils import envs
M
update  
malin10 已提交
24
from paddlerec.core.metric import Metric
C
Chengmo 已提交
25

F
frankwhzhang 已提交
26 27 28
logging.basicConfig(
    format='%(asctime)s - %(levelname)s: %(message)s', level=logging.INFO)

C
Chengmo 已提交
29 30 31 32 33
__all__ = [
    "RunnerBase", "SingleRunner", "PSRunner", "CollectiveRunner", "PslibRunner"
]


C
Chengmo 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
def as_numpy(tensor):
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())

    Args:
       tensor(Variable): a instance of Tensor

    Returns:
        numpy.ndarray
    """
    if isinstance(tensor, fluid.core.LoDTensorArray):
        return [as_numpy(t) for t in tensor]
    if isinstance(tensor, list):
        return [as_numpy(t) for t in tensor]
    assert isinstance(tensor, fluid.core.LoDTensor)
    lod = tensor.lod()
    # (todo) need print lod or return it for user
    if tensor._is_initialized():
        return np.array(tensor)
    else:
        return None


C
Chengmo 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82
class RunnerBase(object):
    """R
    """

    def __init__(self, context):
        pass

    def exuctor(self, context):
        pass

    def _run(self, context, model_dict):
        reader_name = model_dict["dataset_name"]
        name = "dataset." + reader_name + "."
T
tangwei 已提交
83

C
Chengmo 已提交
84
        if envs.get_global_env(name + "type") == "DataLoader":
M
update  
malin10 已提交
85
            return self._executor_dataloader_train(model_dict, context)
C
Chengmo 已提交
86 87
        else:
            self._executor_dataset_train(model_dict, context)
M
update  
malin10 已提交
88
            return None
C
Chengmo 已提交
89 90 91 92 93

    def _executor_dataset_train(self, model_dict, context):
        reader_name = model_dict["dataset_name"]
        model_name = model_dict["name"]
        model_class = context["model"][model_dict["name"]]["model"]
94

C
Chengmo 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
        fetch_vars = []
        fetch_alias = []
        fetch_period = int(
            envs.get_global_env("runner." + context["runner_name"] +
                                ".print_interval", 20))
        scope = context["model"][model_name]["scope"]
        program = context["model"][model_name]["main_program"]
        reader = context["dataset"][reader_name]

        with fluid.scope_guard(scope):
            if context["is_infer"]:
                metrics = model_class.get_infer_results()
                if metrics:
                    fetch_vars = metrics.values()
                    fetch_alias = metrics.keys()
                context["exe"].infer_from_dataset(
                    program=program,
                    dataset=reader,
                    fetch_list=fetch_vars,
                    fetch_info=fetch_alias,
X
xjqbest 已提交
115 116
                    print_period=fetch_period,
                    debug=envs.get_global_env("debug", False))
C
Chengmo 已提交
117 118 119 120 121 122 123 124 125 126 127
            else:
                metrics = model_class.get_metrics()
                if metrics:
                    fetch_vars = metrics.values()
                    fetch_alias = metrics.keys()
                with fluid.scope_guard(scope):
                    context["exe"].train_from_dataset(
                        program=program,
                        dataset=reader,
                        fetch_list=fetch_vars,
                        fetch_info=fetch_alias,
X
xjqbest 已提交
128 129
                        print_period=fetch_period,
                        debug=envs.get_global_env("debug", False))
C
Chengmo 已提交
130 131 132 133

    def _executor_dataloader_train(self, model_dict, context):
        model_name = model_dict["name"]
        model_class = context["model"][model_dict["name"]]["model"]
134
        program = self._get_dataloader_program(model_dict, context)
C
Chengmo 已提交
135 136 137 138 139 140 141 142 143 144 145

        fetch_period = int(
            envs.get_global_env("runner." + context["runner_name"] +
                                ".print_interval", 20))
        if context["is_infer"]:
            metrics = model_class.get_infer_results()
        else:
            metrics = model_class.get_metrics()

        metrics_varnames = []
        metrics_format = []
F
frankwhzhang 已提交
146 147

        if context["is_infer"]:
F
frankwhzhang 已提交
148
            metrics_format.append("\t[Infer]\t{}: {{}}".format("batch"))
F
frankwhzhang 已提交
149
        else:
F
frankwhzhang 已提交
150
            metrics_format.append("\t[Train]\t{}: {{}}".format("batch"))
F
frankwhzhang 已提交
151 152 153

        metrics_format.append("{}: {{:.2f}}s".format("time_each_interval"))

M
update  
malin10 已提交
154
        metrics_names = ["total_batch"]
F
frankwhzhang 已提交
155

C
Chengmo 已提交
156
        for name, var in metrics.items():
M
update  
malin10 已提交
157
            metrics_names.append(name)
C
Chengmo 已提交
158 159 160 161 162 163 164
            metrics_varnames.append(var.name)
            metrics_format.append("{}: {{}}".format(name))
        metrics_format = ", ".join(metrics_format)

        reader = context["model"][model_dict["name"]]["model"]._data_loader
        reader.start()
        batch_id = 0
F
frankwhzhang 已提交
165
        begin_time = time.time()
C
Chengmo 已提交
166
        scope = context["model"][model_name]["scope"]
M
update  
malin10 已提交
167
        result = None
C
Chengmo 已提交
168 169 170
        with fluid.scope_guard(scope):
            try:
                while True:
C
Chengmo 已提交
171 172 173 174
                    metrics_tensors = context["exe"].run(
                        program=program,
                        fetch_list=metrics_varnames,
                        return_numpy=False)
C
Chengmo 已提交
175 176

                    if batch_id % fetch_period == 0 and batch_id != 0:
F
frankwhzhang 已提交
177
                        metrics = [batch_id]
F
frankwhzhang 已提交
178 179 180 181 182 183 184 185 186 187
                        end_time = time.time()
                        seconds = end_time - begin_time
                        metrics.extend([seconds])
                        begin_time = end_time

                        metrics_rets = [
                            as_numpy(metrics_tensor)
                            for metrics_tensor in metrics_tensors
                        ]
                        metrics.extend(metrics_rets)
F
frankwhzhang 已提交
188
                        logging.info(metrics_format.format(*metrics))
C
Chengmo 已提交
189 190 191 192
                    batch_id += 1
            except fluid.core.EOFException:
                reader.reset()

M
update  
malin10 已提交
193
        if batch_id > 0:
M
update  
malin10 已提交
194 195
            result = dict(zip(metrics_names, metrics))
        return result
M
update  
malin10 已提交
196

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    def _get_dataloader_program(self, model_dict, context):
        model_name = model_dict["name"]
        if context["model"][model_name]["compiled_program"] == None:
            if context["is_infer"]:
                program = context["model"][model_name]["main_program"]
            elif context["is_fleet"]:
                if context["fleet_mode"].upper() == "PS":
                    program = self._get_ps_program(model_dict, context)
                elif context["fleet_mode"].upper() == "COLLECTIVE":
                    program = context["model"][model_name]["main_program"]
            elif not context["is_fleet"]:
                if context["device"].upper() == "CPU":
                    program = self._get_single_cpu_program(model_dict, context)
                elif context["device"].upper() == "GPU":
                    program = self._get_single_gpu_program(model_dict, context)
            context["model"][model_name]["compiled_program"] = program
        return context["model"][model_name]["compiled_program"]

C
Chengmo 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228
    def _get_strategy(self, model_dict, context):
        _build_strategy = fluid.BuildStrategy()
        _exe_strategy = fluid.ExecutionStrategy()

        # 0: kCoeffNumDevice; 1: One; 2: Customized
        _gradient_scale_strategy = model_dict.get("gradient_scale_strategy", 0)
        if _gradient_scale_strategy == 0:
            gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.CoeffNumDevice
        elif _gradient_scale_strategy == 1:
            gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.One
        elif _gradient_scale_strategy == 2:
            gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.Customized
        else:
            raise ValueError(
T
tangwei 已提交
229
                "Unsupported config. gradient_scale_strategy must be one of [0, 1, 2]."
C
Chengmo 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
            )
        _build_strategy.gradient_scale_strategy = gradient_scale_strategy

        if "thread_num" in model_dict and model_dict["thread_num"] > 1:
            _build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
            _exe_strategy.num_threads = model_dict["thread_num"]
            os.environ['CPU_NUM'] = str(_exe_strategy.num_threads)

        return _exe_strategy, _build_strategy

    def _get_single_gpu_program(self, model_dict, context):
        model_name = model_dict["name"]
        return context["model"][model_name]["main_program"].clone()

    def _get_single_cpu_program(self, model_dict, context):
        model_name = model_dict["name"]
        model_class = context["model"][model_dict["name"]]["model"]
        program = context["model"][model_name]["main_program"].clone()
        _exe_strategy, _build_strategy = self._get_strategy(model_dict,
                                                            context)
M
update  
malin10 已提交
250

C
Chengmo 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
        program = fluid.compiler.CompiledProgram(program).with_data_parallel(
            loss_name=model_class.get_avg_cost().name,
            build_strategy=_build_strategy,
            exec_strategy=_exe_strategy)
        return program

    def _get_ps_program(self, model_dict, context):
        model_name = model_dict["name"]
        model_class = context["model"][model_dict["name"]]["model"]
        program = context["model"][model_name]["main_program"].clone()

        _build_strategy = context["strategy"].get_build_strategy()
        _exe_strategy = context["strategy"].get_execute_strategy()

        if "thread_num" in model_dict and model_dict["thread_num"] > 1:
            _build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
            _exe_strategy.num_threads = model_dict["thread_num"]
            os.environ['CPU_NUM'] = str(_exe_strategy.num_threads)

        _gradient_scale_strategy = model_dict.get("gradient_scale_strategy", 0)
        if _gradient_scale_strategy == 0:
            gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.CoeffNumDevice
        elif _gradient_scale_strategy == 1:
            gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.One
        elif _gradient_scale_strategy == 2:
            gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.Customized
        else:
            raise ValueError(
                "Unsurpported config. gradient_scale_strategy must be one of [0, 1, 2]."
            )
        _build_strategy.gradient_scale_strategy = gradient_scale_strategy

        program = fluid.compiler.CompiledProgram(program).with_data_parallel(
            loss_name=model_class.get_avg_cost().name,
            build_strategy=_build_strategy,
            exec_strategy=_exe_strategy)
        return program

    def save(self, epoch_id, context, is_fleet=False):
        def need_save(epoch_id, epoch_interval, is_last=False):
291 292 293 294 295
            name = "runner." + context["runner_name"] + "."
            total_epoch = int(envs.get_global_env(name + "epochs", 1))
            if epoch_id + 1 == total_epoch:
                is_last = True

C
Chengmo 已提交
296 297 298 299 300
            if is_last:
                return True
            if epoch_id == -1:
                return False

301
            return (epoch_id + 1) % epoch_interval == 0
C
Chengmo 已提交
302 303 304 305 306 307 308 309 310 311 312 313

        def save_inference_model():
            name = "runner." + context["runner_name"] + "."
            save_interval = int(
                envs.get_global_env(name + "save_inference_interval", -1))
            if not need_save(epoch_id, save_interval, False):
                return
            feed_varnames = envs.get_global_env(
                name + "save_inference_feed_varnames", [])
            fetch_varnames = envs.get_global_env(
                name + "save_inference_fetch_varnames", [])
            if feed_varnames is None or fetch_varnames is None or feed_varnames == "" or fetch_varnames == "" or \
C
Chengmo 已提交
314
                    len(feed_varnames) == 0 or len(fetch_varnames) == 0:
C
Chengmo 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
                return
            fetch_vars = [
                fluid.default_main_program().global_block().vars[varname]
                for varname in fetch_varnames
            ]
            dirname = envs.get_global_env(name + "save_inference_path", None)

            assert dirname is not None
            dirname = os.path.join(dirname, str(epoch_id))

            if is_fleet:
                context["fleet"].save_inference_model(
                    context["exe"], dirname, feed_varnames, fetch_vars)
            else:
                fluid.io.save_inference_model(dirname, feed_varnames,
                                              fetch_vars, context["exe"])

        def save_persistables():
            name = "runner." + context["runner_name"] + "."
            save_interval = int(
                envs.get_global_env(name + "save_checkpoint_interval", -1))
            if not need_save(epoch_id, save_interval, False):
                return
            dirname = envs.get_global_env(name + "save_checkpoint_path", None)
            if dirname is None or dirname == "":
                return
            dirname = os.path.join(dirname, str(epoch_id))
            if is_fleet:
                context["fleet"].save_persistables(context["exe"], dirname)
            else:
                fluid.io.save_persistables(context["exe"], dirname)

        save_persistables()
        save_inference_model()


class SingleRunner(RunnerBase):
    """R
    """

    def __init__(self, context):
        print("Running SingleRunner.")
        pass

    def run(self, context):
        epochs = int(
            envs.get_global_env("runner." + context["runner_name"] +
                                ".epochs"))
        for epoch in range(epochs):
T
tangwei 已提交
364
            for model_dict in context["phases"]:
M
update  
malin10 已提交
365
                model_class = context["model"][model_dict["name"]]["model"]
M
bug fix  
malin10 已提交
366
                metrics = model_class._metrics
M
update  
malin10 已提交
367

C
Chengmo 已提交
368
                begin_time = time.time()
M
update  
malin10 已提交
369
                result = self._run(context, model_dict)
C
Chengmo 已提交
370 371
                end_time = time.time()
                seconds = end_time - begin_time
M
update  
malin10 已提交
372
                message = "epoch {} done, use time: {}".format(epoch, seconds)
M
update  
malin10 已提交
373 374 375
                metrics_result = []
                for key in metrics:
                    if isinstance(metrics[key], Metric):
M
bug fix  
malin10 已提交
376
                        _str = metrics[key].calc_global_metrics(
M
update  
malin10 已提交
377 378
                            None,
                            context["model"][model_dict["name"]]["scope"])
M
malin10 已提交
379
                        metrics_result.append(_str)
M
update  
malin10 已提交
380 381
                    elif result is not None:
                        _str = "{}={}".format(key, result[key])
M
malin10 已提交
382
                        metrics_result.append(_str)
M
update  
malin10 已提交
383 384
                if len(metrics_result) > 0:
                    message += ", global metrics: " + ", ".join(metrics_result)
M
update  
malin10 已提交
385
                print(message)
M
update  
malin10 已提交
386

C
Chengmo 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
                with fluid.scope_guard(context["model"][model_dict["name"]][
                        "scope"]):
                    train_prog = context["model"][model_dict["name"]][
                        "default_main_program"]
                    startup_prog = context["model"][model_dict["name"]][
                        "startup_program"]
                    with fluid.program_guard(train_prog, startup_prog):
                        self.save(epoch, context)
        context["status"] = "terminal_pass"


class PSRunner(RunnerBase):
    def __init__(self, context):
        print("Running PSRunner.")
        pass

    def run(self, context):
        epochs = int(
            envs.get_global_env("runner." + context["runner_name"] +
                                ".epochs"))
T
tangwei 已提交
407
        model_dict = context["env"]["phase"][0]
M
update  
malin10 已提交
408 409
        model_class = context["model"][model_dict["name"]]["model"]
        metrics = model_class._metrics
C
Chengmo 已提交
410 411
        for epoch in range(epochs):
            begin_time = time.time()
M
update  
malin10 已提交
412
            result = self._run(context, model_dict)
C
Chengmo 已提交
413 414
            end_time = time.time()
            seconds = end_time - begin_time
M
update  
malin10 已提交
415
            message = "epoch {} done, use time: {}".format(epoch, seconds)
M
update  
malin10 已提交
416 417 418 419 420 421 422 423

            # TODO, wait for PaddleCloudRoleMaker supports gloo
            from paddle.fluid.incubate.fleet.base.role_maker import GeneralRoleMaker
            if context["fleet"] is not None and isinstance(context["fleet"],
                                                           GeneralRoleMaker):
                metrics_result = []
                for key in metrics:
                    if isinstance(metrics[key], Metric):
M
bug fix  
malin10 已提交
424
                        _str = metrics[key].calc_global_metrics(
M
update  
malin10 已提交
425 426
                            context["fleet"],
                            context["model"][model_dict["name"]]["scope"])
M
malin10 已提交
427
                        metrics_result.append(_str)
M
update  
malin10 已提交
428 429
                    elif result is not None:
                        _str = "{}={}".format(key, result[key])
M
malin10 已提交
430
                        metrics_result.append(_str)
M
update  
malin10 已提交
431 432
                if len(metrics_result) > 0:
                    message += ", global metrics: " + ", ".join(metrics_result)
M
update  
malin10 已提交
433
            print(message)
C
Chengmo 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
            with fluid.scope_guard(context["model"][model_dict["name"]][
                    "scope"]):
                train_prog = context["model"][model_dict["name"]][
                    "main_program"]
                startup_prog = context["model"][model_dict["name"]][
                    "startup_program"]
                with fluid.program_guard(train_prog, startup_prog):
                    self.save(epoch, context, True)
        context["status"] = "terminal_pass"


class CollectiveRunner(RunnerBase):
    def __init__(self, context):
        print("Running CollectiveRunner.")
        pass

    def run(self, context):
        epochs = int(
            envs.get_global_env("runner." + context["runner_name"] +
                                ".epochs"))
T
tangwei 已提交
454
        model_dict = context["env"]["phase"][0]
C
Chengmo 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
        for epoch in range(epochs):
            begin_time = time.time()
            self._run(context, model_dict)
            end_time = time.time()
            seconds = end_time - begin_time
            print("epoch {} done, use time: {}".format(epoch, seconds))
            with fluid.scope_guard(context["model"][model_dict["name"]][
                    "scope"]):
                train_prog = context["model"][model_dict["name"]][
                    "default_main_program"]
                startup_prog = context["model"][model_dict["name"]][
                    "startup_program"]
                with fluid.program_guard(train_prog, startup_prog):
                    self.save(epoch, context, True)
        context["status"] = "terminal_pass"


class PslibRunner(RunnerBase):
    def __init__(self, context):
        print("Running PSRunner.")
        pass

    def run(self, context):
        context["fleet"].init_worker()
T
tangwei 已提交
479
        model_dict = context["env"]["phase"][0]
C
Chengmo 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
        epochs = int(
            envs.get_global_env("runner." + context["runner_name"] +
                                ".epochs"))
        for epoch in range(epochs):
            begin_time = time.time()
            self._run(context, model_dict)
            end_time = time.time()
            seconds = end_time - begin_time
            print("epoch {} done, use time: {}".format(epoch, seconds))
        """
        # online Training Can do more, As shown below:

        begin_day = datetime.datetime.strptime("begin_day_d", '%Y%m%d')
        days = int(
            envs.get_global_env("runner." + context["runner_name"] + ".days"))
        for day in range(days):
            for hour in range(24):
                day = begin_day + datetime.timedelta(days=day, hours=hour)
                day_s = day.strftime('%Y%m%d/%H')

T
tangwei 已提交
500
                for dataset in envs.get_global_env("dataset"):
C
Chengmo 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
                    if dataset["type"] != "DataLoader":
                        name = dataset["name"]
                        train_data_path = envs.get_global_env(name +
                                                              "data_path")
                        train_data_path = os.path.join(train_data_path, day_s)

                        file_list = [
                            os.path.join(train_data_path, x)
                            for x in os.listdir(train_data_path)
                        ]
                        context["dataset"][name].set_filelist(file_list)

                for epoch in range(epochs):
                    begin_time = time.time()
                    self._run(context, model_dict)
                    end_time = time.time()
                    seconds = end_time - begin_time
                    print("epoch {} done, use time: {}".format(epoch, seconds))
                    with fluid.scope_guard(context["model"][model_dict["name"]]
                                           ["scope"]):
                        train_prog = context["model"][model_dict["name"]][
                            "default_main_program"]
                        startup_prog = context["model"][model_dict["name"]][
                            "startup_program"]
                        with fluid.program_guard(train_prog, startup_prog):
                            self.save(epoch, context, True)

        """
        context["status"] = "terminal_pass"
530 531 532 533 534 535 536 537 538 539 540 541


class SingleInferRunner(RunnerBase):
    def __init__(self, context):
        print("Running SingleInferRunner.")
        pass

    def run(self, context):
        self._dir_check(context)

        for index, epoch_name in enumerate(self.epoch_model_name_list):
            for model_dict in context["phases"]:
M
update  
malin10 已提交
542 543
                model_class = context["model"][model_dict["name"]]["model"]
                metrics = model_class._infer_results
544 545 546
                self._load(context, model_dict,
                           self.epoch_model_path_list[index])
                begin_time = time.time()
M
update  
malin10 已提交
547
                result = self._run(context, model_dict)
548 549
                end_time = time.time()
                seconds = end_time - begin_time
M
update  
malin10 已提交
550 551
                message = "Infer {} of epoch {} done, use time: {}".format(
                    model_dict["name"], epoch_name, seconds)
M
update  
malin10 已提交
552 553 554
                metrics_result = []
                for key in metrics:
                    if isinstance(metrics[key], Metric):
M
bug fix  
malin10 已提交
555
                        _str = metrics[key].calc_global_metrics(
M
update  
malin10 已提交
556 557
                            None,
                            context["model"][model_dict["name"]]["scope"])
M
malin10 已提交
558
                        metrics_result.append(_str)
M
update  
malin10 已提交
559 560
                    elif result is not None:
                        _str = "{}={}".format(key, result[key])
M
malin10 已提交
561
                        metrics_result.append(_str)
M
update  
malin10 已提交
562 563
                if len(metrics_result) > 0:
                    message += ", global metrics: " + ", ".join(metrics_result)
M
update  
malin10 已提交
564 565
                print(message)

566 567 568 569 570 571 572 573 574 575 576 577 578 579
        context["status"] = "terminal_pass"

    def _load(self, context, model_dict, model_path):
        if model_path is None or model_path == "":
            return
        print("load persistables from", model_path)

        with fluid.scope_guard(context["model"][model_dict["name"]]["scope"]):
            train_prog = context["model"][model_dict["name"]]["main_program"]
            startup_prog = context["model"][model_dict["name"]][
                "startup_program"]
            with fluid.program_guard(train_prog, startup_prog):
                fluid.io.load_persistables(
                    context["exe"], model_path, main_program=train_prog)
M
update  
malin10 已提交
580 581 582 583
            clear_metrics = context["model"][model_dict["name"]][
                "model"].get_clear_metrics()
            for var in clear_metrics:
                var.clear()
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599

    def _dir_check(self, context):
        dirname = envs.get_global_env(
            "runner." + context["runner_name"] + ".init_model_path", None)
        self.epoch_model_path_list = []
        self.epoch_model_name_list = []

        for file in os.listdir(dirname):
            file_path = os.path.join(dirname, file)
            if os.path.isdir(file_path):
                self.epoch_model_path_list.append(file_path)
                self.epoch_model_name_list.append(file)

        if len(self.epoch_model_path_list) == 0:
            self.epoch_model_path_list.append(dirname)
            self.epoch_model_name_list.append(dirname)