build.py 8.6 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
tangwei 已提交
15 16 17 18 19
import yaml
import copy
import paddle.fluid as fluid
from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet

20 21
from paddlerec.core.model import Model
from paddlerec.core.utils import table
T
tangwei 已提交
22

T
tangwei 已提交
23

X
xiexionghang 已提交
24
def create(config):
X
xiexionghang 已提交
25 26 27
    """
    Create a model instance by config
    Args:
T
tangwei 已提交
28
        config(dict) : desc model type and net
X
xiexionghang 已提交
29 30 31
    Return:
        Model Instance
    """
X
xiexionghang 已提交
32 33
    model = None
    if config['mode'] == 'fluid':
T
tangwei 已提交
34
        model = YamlModel(config)
T
tangwei 已提交
35
        model.train_net()
X
xiexionghang 已提交
36
    return model
T
tangwei 已提交
37

X
xiexionghang 已提交
38

T
tangwei 已提交
39
class YamlModel(Model):
X
xiexionghang 已提交
40 41
    """R
    """
T
tangwei 已提交
42

X
xiexionghang 已提交
43
    def __init__(self, config):
X
xiexionghang 已提交
44 45
        """R
        """
T
tangwei 已提交
46
        Model.__init__(self, config)
T
tangwei 已提交
47 48 49 50 51 52 53
        self._config = config
        self._name = config['name']
        f = open(config['layer_file'], 'r')
        self._build_nodes = yaml.safe_load(f.read())
        self._build_phase = ['input', 'param', 'summary', 'layer']
        self._build_param = {'layer': {}, 'inner_layer': {}, 'layer_extend': {}, 'model': {}}
        self._inference_meta = {'dependency': {}, 'params': {}}
T
tangwei 已提交
54

T
tangwei 已提交
55
    def train_net(self):
X
xiexionghang 已提交
56 57 58 59 60 61 62 63 64
        """R
        build a fluid model with config
        Return:
            modle_instance(dict)
                train_program
                startup_program
                inference_param : all params name list
                table: table-meta to ps-server
        """
X
xiexionghang 已提交
65 66
        for layer in self._build_nodes['layer']:
            self._build_param['inner_layer'][layer['name']] = layer
T
tangwei 已提交
67

X
xiexionghang 已提交
68 69 70
        self._build_param['table'] = {}
        self._build_param['model']['train_program'] = fluid.Program()
        self._build_param['model']['startup_program'] = fluid.Program()
X
xiexionghang 已提交
71
        with fluid.program_guard(self._build_param['model']['train_program'], \
T
tangwei 已提交
72
                                 self._build_param['model']['startup_program']):
X
xiexionghang 已提交
73 74 75 76 77
            with fluid.unique_name.guard():
                for phase in self._build_phase:
                    if self._build_nodes[phase] is None:
                        continue
                    for node in self._build_nodes[phase]:
T
tangwei 已提交
78
                        exec("""layer=layer.{}(node)""".format(node['class']))
X
xiexionghang 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
                        layer_output, extend_output = layer.generate(self._config['mode'], self._build_param)
                        self._build_param['layer'][node['name']] = layer_output
                        self._build_param['layer_extend'][node['name']] = extend_output
                        if extend_output is None:
                            continue
                        if 'loss' in extend_output:
                            if self._cost is None:
                                self._cost = extend_output['loss']
                            else:
                                self._cost += extend_output['loss']
                        if 'data_var' in extend_output:
                            self._data_var += extend_output['data_var']
                        if 'metric_label' in extend_output and extend_output['metric_label'] is not None:
                            self._metrics[extend_output['metric_label']] = extend_output['metric_dict']

                        if 'inference_param' in extend_output:
X
xiexionghang 已提交
95 96
                            inference_param = extend_output['inference_param']
                            param_name = inference_param['name']
X
xiexionghang 已提交
97
                            if param_name not in self._build_param['table']:
T
tangwei 已提交
98
                                self._build_param['table'][param_name] = {'params': []}
T
tangwei 已提交
99
                                table_meta = table.TableMeta.alloc_new_table(inference_param['table_id'])
X
xiexionghang 已提交
100
                                self._build_param['table'][param_name]['_meta'] = table_meta
X
xiexionghang 已提交
101
                            self._build_param['table'][param_name]['params'] += inference_param['params']
X
xiexionghang 已提交
102
        pass
T
tangwei 已提交
103

X
xiexionghang 已提交
104 105
    @classmethod
    def build_optimizer(self, params):
X
xiexionghang 已提交
106 107
        """R
        """
X
xiexionghang 已提交
108 109 110 111 112 113 114 115
        optimizer_conf = params['optimizer_conf']
        strategy = None
        if 'strategy' in optimizer_conf:
            strategy = optimizer_conf['strategy']
            stat_var_names = []
            metrics = params['metrics']
            for name in metrics:
                model_metrics = metrics[name]
X
xiexionghang 已提交
116
                stat_var_names += [model_metrics[metric]['var'].name for metric in model_metrics]
X
xiexionghang 已提交
117
            strategy['stat_var_names'] = list(set(stat_var_names))
X
xiexionghang 已提交
118
        optimizer_generator = 'optimizer = fluid.optimizer.' + optimizer_conf['class'] + \
T
tangwei 已提交
119 120
                              '(learning_rate=' + str(optimizer_conf['learning_rate']) + ')'
        exec(optimizer_generator)
X
xiexionghang 已提交
121 122 123 124
        optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
        return optimizer

    def dump_model_program(self, path):
X
xiexionghang 已提交
125 126
        """R
        """
X
xiexionghang 已提交
127 128 129 130 131 132 133
        with open(path + '/' + self._name + '_main_program.pbtxt', "w") as fout:
            print >> fout, self._build_param['model']['train_program']
        with open(path + '/' + self._name + '_startup_program.pbtxt', "w") as fout:
            print >> fout, self._build_param['model']['startup_program']
        pass

    def shrink(self, params):
X
xiexionghang 已提交
134 135
        """R
        """
X
xiexionghang 已提交
136 137 138 139 140 141 142
        scope = params['scope']
        decay = params['decay']
        for param_table in self._build_param['table']:
            table_id = self._build_param['table'][param_table]['_meta']._table_id
            fleet.shrink_dense_table(decay, scope=scope, table_id=table_id)

    def dump_inference_program(self, inference_layer, path):
X
xiexionghang 已提交
143 144
        """R
        """
X
xiexionghang 已提交
145 146 147
        pass

    def dump_inference_param(self, params):
X
xiexionghang 已提交
148 149
        """R
        """
X
xiexionghang 已提交
150 151 152
        scope = params['scope']
        executor = params['executor']
        program = self._build_param['model']['train_program']
X
xiexionghang 已提交
153
        for table_name, table in self._build_param['table'].items():
X
xiexionghang 已提交
154 155 156
            fleet._fleet_ptr.pull_dense(scope, table['_meta']._table_id, table['params'])
        for infernce_item in params['inference_list']:
            params_name_list = self.inference_params(infernce_item['layer_name'])
X
xiexionghang 已提交
157
            params_var_list = [program.global_block().var(i) for i in params_name_list]
X
xiexionghang 已提交
158 159 160
            params_file_name = infernce_item['save_file_name']
            with fluid.scope_guard(scope):
                if params['save_combine']:
X
xiexionghang 已提交
161
                    fluid.io.save_vars(executor, "./", \
T
tangwei 已提交
162
                                       program, vars=params_var_list, filename=params_file_name)
X
xiexionghang 已提交
163 164
                else:
                    fluid.io.save_vars(executor, params_file_name, program, vars=params_var_list)
T
tangwei 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

    def inference_params(self, inference_layer):
        """
        get params name for inference_layer
        Args:
            inference_layer(str): layer for inference
        Return:
            params(list): params name list that for inference layer
        """
        layer = inference_layer
        if layer in self._inference_meta['params']:
            return self._inference_meta['params'][layer]

        self._inference_meta['params'][layer] = []
        self._inference_meta['dependency'][layer] = self.get_dependency(self._build_param['inner_layer'], layer)
        for node in self._build_nodes['layer']:
            if node['name'] not in self._inference_meta['dependency'][layer]:
                continue
            if 'inference_param' in self._build_param['layer_extend'][node['name']]:
                self._inference_meta['params'][layer] += \
                    self._build_param['layer_extend'][node['name']]['inference_param']['params']
        return self._inference_meta['params'][layer]

    def get_dependency(self, layer_graph, dest_layer):
        """
        get model of dest_layer depends on
        Args:
            layer_graph(dict) : all model in graph
        Return:
            depend_layers(list) : sub-graph model for calculate dest_layer
        """
        dependency_list = []
        if dest_layer in layer_graph:
            dependencys = copy.deepcopy(layer_graph[dest_layer]['input'])
            dependency_list = copy.deepcopy(dependencys)
            for dependency in dependencys:
                dependency_list = dependency_list + self.get_dependency(layer_graph, dependency)
T
tangwei 已提交
202
        return list(set(dependency_list))