model.py 7.2 KB
Newer Older
Z
zhangwenhui03 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
import paddle.fluid.layers.tensor as tensor
import paddle.fluid.layers.control_flow as cf

T
tangwei 已提交
19
from paddlerec.core.utils import envs
C
Chengmo 已提交
20
from paddlerec.core.model import ModelBase
Z
zhangwenhui03 已提交
21 22 23 24 25 26


class Model(ModelBase):
    def __init__(self, config):
        ModelBase.__init__(self, config)

F
add ssr  
frankwhzhang 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    def _init_hyper_parameters(self):
        self.vocab_size = envs.get_global_env("hyper_parameters.vocab_size")
        self.emb_dim = envs.get_global_env("hyper_parameters.emb_dim")
        self.hidden_size = envs.get_global_env("hyper_parameters.hidden_size")

    def input_data(self, is_infer=False, **kwargs):
        if is_infer:
            user_data = fluid.data(
                name="user", shape=[None, 1], dtype="int64", lod_level=1)
            all_item_data = fluid.data(
                name="all_item", shape=[None, self.vocab_size], dtype="int64")
            pos_label = fluid.data(
                name="pos_label", shape=[None, 1], dtype="int64")
            return [user_data, all_item_data, pos_label]
        else:
            user_data = fluid.data(
                name="user", shape=[None, 1], dtype="int64", lod_level=1)
            pos_item_data = fluid.data(
                name="p_item", shape=[None, 1], dtype="int64", lod_level=1)
            neg_item_data = fluid.data(
                name="n_item", shape=[None, 1], dtype="int64", lod_level=1)
            return [user_data, pos_item_data, neg_item_data]

    def net(self, inputs, is_infer=False):
        if is_infer:
            self._infer_net(inputs)
            return
        user_data = inputs[0]
        pos_item_data = inputs[1]
        neg_item_data = inputs[2]
        emb_shape = [self.vocab_size, self.emb_dim]
Z
zhangwenhui03 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71
        self.user_encoder = GrnnEncoder()
        self.item_encoder = BowEncoder()
        self.pairwise_hinge_loss = PairwiseHingeLoss()

        user_emb = fluid.embedding(
            input=user_data, size=emb_shape, param_attr="emb.item")
        pos_item_emb = fluid.embedding(
            input=pos_item_data, size=emb_shape, param_attr="emb.item")
        neg_item_emb = fluid.embedding(
            input=neg_item_data, size=emb_shape, param_attr="emb.item")
        user_enc = self.user_encoder.forward(user_emb)
        pos_item_enc = self.item_encoder.forward(pos_item_emb)
        neg_item_enc = self.item_encoder.forward(neg_item_emb)
        user_hid = fluid.layers.fc(input=user_enc,
F
add ssr  
frankwhzhang 已提交
72
                                   size=self.hidden_size,
Z
zhangwenhui03 已提交
73 74 75
                                   param_attr='user.w',
                                   bias_attr="user.b")
        pos_item_hid = fluid.layers.fc(input=pos_item_enc,
F
add ssr  
frankwhzhang 已提交
76
                                       size=self.hidden_size,
Z
zhangwenhui03 已提交
77 78 79
                                       param_attr='item.w',
                                       bias_attr="item.b")
        neg_item_hid = fluid.layers.fc(input=neg_item_enc,
F
add ssr  
frankwhzhang 已提交
80
                                       size=self.hidden_size,
Z
zhangwenhui03 已提交
81 82 83 84 85 86
                                       param_attr='item.w',
                                       bias_attr="item.b")
        cos_pos = fluid.layers.cos_sim(user_hid, pos_item_hid)
        cos_neg = fluid.layers.cos_sim(user_hid, neg_item_hid)
        hinge_loss = self.pairwise_hinge_loss.forward(cos_pos, cos_neg)
        avg_cost = fluid.layers.mean(hinge_loss)
F
add ssr  
frankwhzhang 已提交
87
        correct = self._get_correct(cos_neg, cos_pos)
T
for mat  
tangwei 已提交
88

Z
zhangwenhui03 已提交
89 90 91 92
        self._cost = avg_cost
        self._metrics["correct"] = correct
        self._metrics["hinge_loss"] = hinge_loss

F
add ssr  
frankwhzhang 已提交
93 94 95 96
    def _infer_net(self, inputs):
        user_data = inputs[0]
        all_item_data = inputs[1]
        pos_label = inputs[2]
Z
zhangwenhui03 已提交
97 98

        user_emb = fluid.embedding(
F
add ssr  
frankwhzhang 已提交
99 100 101
            input=user_data,
            size=[self.vocab_size, self.emb_dim],
            param_attr="emb.item")
Z
zhangwenhui03 已提交
102
        all_item_emb = fluid.embedding(
T
tangwei 已提交
103
            input=all_item_data,
F
add ssr  
frankwhzhang 已提交
104
            size=[self.vocab_size, self.emb_dim],
T
tangwei 已提交
105 106
            param_attr="emb.item")
        all_item_emb_re = fluid.layers.reshape(
F
add ssr  
frankwhzhang 已提交
107
            x=all_item_emb, shape=[-1, self.emb_dim])
Z
zhangwenhui03 已提交
108 109 110 111

        user_encoder = GrnnEncoder()
        user_enc = user_encoder.forward(user_emb)
        user_hid = fluid.layers.fc(input=user_enc,
F
add ssr  
frankwhzhang 已提交
112
                                   size=self.hidden_size,
Z
zhangwenhui03 已提交
113 114
                                   param_attr='user.w',
                                   bias_attr="user.b")
T
tangwei 已提交
115
        user_exp = fluid.layers.expand(
F
add ssr  
frankwhzhang 已提交
116 117 118
            x=user_hid, expand_times=[1, self.vocab_size])
        user_re = fluid.layers.reshape(
            x=user_exp, shape=[-1, self.hidden_size])
Z
zhangwenhui03 已提交
119 120

        all_item_hid = fluid.layers.fc(input=all_item_emb_re,
F
add ssr  
frankwhzhang 已提交
121
                                       size=self.hidden_size,
Z
zhangwenhui03 已提交
122 123 124
                                       param_attr='item.w',
                                       bias_attr="item.b")
        cos_item = fluid.layers.cos_sim(X=all_item_hid, Y=user_re)
F
add ssr  
frankwhzhang 已提交
125 126
        all_pre_ = fluid.layers.reshape(
            x=cos_item, shape=[-1, self.vocab_size])
Z
zhangwenhui03 已提交
127 128 129 130
        acc = fluid.layers.accuracy(input=all_pre_, label=pos_label, k=20)

        self._infer_results['recall20'] = acc

F
add ssr  
frankwhzhang 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    def _get_correct(self, x, y):
        less = tensor.cast(cf.less_than(x, y), dtype='float32')
        correct = fluid.layers.reduce_sum(less)
        return correct


class BowEncoder(object):
    """ bow-encoder """

    def __init__(self):
        self.param_name = ""

    def forward(self, emb):
        return fluid.layers.sequence_pool(input=emb, pool_type='sum')


class GrnnEncoder(object):
    """ grnn-encoder """

    def __init__(self, param_name="grnn", hidden_size=128):
        self.param_name = param_name
        self.hidden_size = hidden_size

    def forward(self, emb):
        fc0 = fluid.layers.fc(input=emb,
                              size=self.hidden_size * 3,
                              param_attr=self.param_name + "_fc.w",
                              bias_attr=False)

        gru_h = fluid.layers.dynamic_gru(
            input=fc0,
            size=self.hidden_size,
            is_reverse=False,
            param_attr=self.param_name + ".param",
            bias_attr=self.param_name + ".bias")
        return fluid.layers.sequence_pool(input=gru_h, pool_type='max')


class PairwiseHingeLoss(object):
    def __init__(self, margin=0.8):
        self.margin = margin

    def forward(self, pos, neg):
        loss_part1 = fluid.layers.elementwise_sub(
            tensor.fill_constant_batch_size_like(
                input=pos, shape=[-1, 1], value=self.margin, dtype='float32'),
            pos)
        loss_part2 = fluid.layers.elementwise_add(loss_part1, neg)
        loss_part3 = fluid.layers.elementwise_max(
            tensor.fill_constant_batch_size_like(
                input=loss_part2, shape=[-1, 1], value=0.0, dtype='float32'),
            loss_part2)
        return loss_part3