criteo_reader.py 2.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
T
tangwei 已提交
14

15 16 17 18 19 20 21
from __future__ import print_function

try:
    import cPickle as pickle
except ImportError:
    import pickle

T
tangwei 已提交
22 23 24 25
from paddlerec.core.reader import Reader
from paddlerec.core.utils import envs


26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
class TrainReader(Reader):
    def init(self):
        self.cont_min_ = [0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        self.cont_max_ = [
            5775, 257675, 65535, 969, 23159456, 431037, 56311, 6047, 29019, 46,
            231, 4008, 7393
        ]
        self.cont_diff_ = [
            self.cont_max_[i] - self.cont_min_[i]
            for i in range(len(self.cont_min_))
        ]
        self.continuous_range_ = range(1, 14)
        self.categorical_range_ = range(14, 40)
        # load preprocessed feature dict 
        self.feat_dict_name = envs.get_global_env("feat_dict_name", None, "train.reader")
T
for mat  
tangwei 已提交
41
        self.feat_dict_ = pickle.load(open(self.feat_dict_name, 'rb'))
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

    def _process_line(self, line):
        features = line.rstrip('\n').split('\t')
        feat_idx = []
        feat_value = []
        for idx in self.continuous_range_:
            if features[idx] == '':
                feat_idx.append(0)
                feat_value.append(0.0)
            else:
                feat_idx.append(self.feat_dict_[idx])
                feat_value.append(
                    (float(features[idx]) - self.cont_min_[idx - 1]) /
                    self.cont_diff_[idx - 1])
        for idx in self.categorical_range_:
            if features[idx] == '' or features[idx] not in self.feat_dict_:
                feat_idx.append(0)
                feat_value.append(0.0)
            else:
                feat_idx.append(self.feat_dict_[features[idx]])
                feat_value.append(1.0)
        label = [int(features[0])]
        return feat_idx, feat_value, label
T
for mat  
tangwei 已提交
65

66 67 68 69
    def generate_sample(self, line):
        """
        Read the data line by line and process it as a dictionary
        """
T
for mat  
tangwei 已提交
70

71 72 73 74
        def data_iter():
            feat_idx, feat_value, label = self._process_line(line)
            yield [('feat_idx', feat_idx), ('feat_value', feat_value), ('label', label)]

T
for mat  
tangwei 已提交
75
        return data_iter