model.py 9.0 KB
Newer Older
M
add w2v  
malin10 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle.fluid as fluid

18 19
from paddlerec.core.utils import envs
from paddlerec.core.model import Model as ModelBase
M
add w2v  
malin10 已提交
20 21 22 23 24 25


class Model(ModelBase):
    def __init__(self, config):
        ModelBase.__init__(self, config)

M
malin10 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    def _init_hyper_parameters(self):
        self.is_distributed = True if envs.get_trainer(
        ) == "CtrTrainer" else False
        self.sparse_feature_number = envs.get_global_env(
            "hyper_parameters.sparse_feature_number")
        self.sparse_feature_dim = envs.get_global_env(
            "hyper_parameters.sparse_feature_dim")
        self.neg_num = envs.get_global_env("hyper_parameters.neg_num")
        self.with_shuffle_batch = envs.get_global_env(
            "hyper_parameters.with_shuffle_batch")
        self.learning_rate = envs.get_global_env(
            "hyper_parameters.optimizer.learning_rate")
        self.decay_steps = envs.get_global_env(
            "hyper_parameters.optimizer.decay_steps")
        self.decay_rate = envs.get_global_env(
            "hyper_parameters.optimizer.decay_rate")

    def input_data(self, is_infer=False, **kwargs):
        if is_infer:
            analogy_a = fluid.data(
                name="analogy_a", shape=[None], dtype='int64')
            analogy_b = fluid.data(
                name="analogy_b", shape=[None], dtype='int64')
            analogy_c = fluid.data(
                name="analogy_c", shape=[None], dtype='int64')
            analogy_d = fluid.data(
                name="analogy_d", shape=[None], dtype='int64')
            return [analogy_a, analogy_b, analogy_c, analogy_d]

        input_word = fluid.data(
T
tangwei 已提交
56
            name="input_word", shape=[None, 1], dtype='int64')
M
malin10 已提交
57
        true_word = fluid.data(
T
tangwei 已提交
58
            name='true_label', shape=[None, 1], dtype='int64')
M
malin10 已提交
59 60
        if self.with_shuffle_batch:
            return [input_word, true_word]
M
add w2v  
malin10 已提交
61

M
malin10 已提交
62 63 64
        neg_word = fluid.data(
            name="neg_label", shape=[None, self.neg_num], dtype='int64')
        return [input_word, true_word, neg_word]
M
add w2v  
malin10 已提交
65

M
malin10 已提交
66 67 68 69
    def net(self, inputs, is_infer=False):
        if is_infer:
            self.infer_net(inputs)
            return
M
add w2v  
malin10 已提交
70

T
tangwei 已提交
71 72 73 74
        def embedding_layer(input,
                            table_name,
                            initializer_instance=None,
                            squeeze=False):
M
add w2v  
malin10 已提交
75 76 77
            emb = fluid.embedding(
                input=input,
                is_sparse=True,
M
malin10 已提交
78 79
                is_distributed=self.is_distributed,
                size=[self.sparse_feature_number, self.sparse_feature_dim],
M
add w2v  
malin10 已提交
80
                param_attr=fluid.ParamAttr(
T
tangwei 已提交
81
                    name=table_name, initializer=initializer_instance), )
M
add w2v  
malin10 已提交
82 83 84 85 86
            if squeeze:
                return fluid.layers.squeeze(input=emb, axes=[1])
            else:
                return emb

M
malin10 已提交
87
        init_width = 1.0 / self.sparse_feature_dim
M
add w2v  
malin10 已提交
88 89 90
        emb_initializer = fluid.initializer.Uniform(-init_width, init_width)
        emb_w_initializer = fluid.initializer.Constant(value=0.0)

M
malin10 已提交
91 92
        input_emb = embedding_layer(inputs[0], "emb", emb_initializer, True)
        true_emb_w = embedding_layer(inputs[1], "emb_w", emb_w_initializer,
T
tangwei 已提交
93
                                     True)
C
chengmo 已提交
94

M
malin10 已提交
95
        if self.with_shuffle_batch:
M
add w2v  
malin10 已提交
96
            neg_emb_w_list = []
M
malin10 已提交
97
            for i in range(self.neg_num):
T
tangwei 已提交
98 99 100
                neg_emb_w_list.append(
                    fluid.contrib.layers.shuffle_batch(
                        true_emb_w))  # shuffle true_word
C
chengmo 已提交
101 102
            neg_emb_w_concat = fluid.layers.concat(neg_emb_w_list, axis=0)
            neg_emb_w = fluid.layers.reshape(
M
malin10 已提交
103 104
                neg_emb_w_concat,
                shape=[-1, self.neg_num, self.sparse_feature_dim])
M
add w2v  
malin10 已提交
105
        else:
M
malin10 已提交
106 107 108 109 110
            neg_emb_w = embedding_layer(inputs[2], "emb_w", emb_w_initializer)
        true_logits = fluid.layers.reduce_sum(
            fluid.layers.elementwise_mul(input_emb, true_emb_w),
            dim=1,
            keep_dim=True)
M
add w2v  
malin10 已提交
111 112

        input_emb_re = fluid.layers.reshape(
M
malin10 已提交
113
            input_emb, shape=[-1, 1, self.sparse_feature_dim])
C
chengmo 已提交
114 115
        neg_matmul = fluid.layers.matmul(
            input_emb_re, neg_emb_w, transpose_y=True)
M
malin10 已提交
116
        neg_logits = fluid.layers.reshape(neg_matmul, shape=[-1, 1])
M
add w2v  
malin10 已提交
117

M
malin10 已提交
118 119 120 121 122 123 124 125 126 127
        logits = fluid.layers.concat([true_logits, neg_logits], axis=0)
        label_ones = fluid.layers.fill_constant(
            shape=[fluid.layers.shape(true_logits)[0], 1],
            value=1.0,
            dtype='float32')
        label_zeros = fluid.layers.fill_constant(
            shape=[fluid.layers.shape(neg_logits)[0], 1],
            value=0.0,
            dtype='float32')
        label = fluid.layers.concat([label_ones, label_zeros], axis=0)
M
add w2v  
malin10 已提交
128

M
malin10 已提交
129 130
        loss = fluid.layers.log_loss(fluid.layers.sigmoid(logits), label)
        avg_cost = fluid.layers.reduce_sum(loss)
M
add w2v  
malin10 已提交
131

M
malin10 已提交
132 133
        self._cost = avg_cost
        self._metrics["LOSS"] = avg_cost
M
add w2v  
malin10 已提交
134 135 136 137

    def optimizer(self):
        optimizer = fluid.optimizer.SGD(
            learning_rate=fluid.layers.exponential_decay(
M
malin10 已提交
138 139 140
                learning_rate=self.learning_rate,
                decay_steps=self.decay_steps,
                decay_rate=self.decay_rate,
M
add w2v  
malin10 已提交
141 142 143 144
                staircase=True))
        return optimizer

    def analogy_input(self):
C
chengmo 已提交
145 146 147 148 149 150 151 152 153 154
        sparse_feature_number = envs.get_global_env(
            "hyper_parameters.sparse_feature_number", None, self._namespace)
        self.analogy_a = fluid.data(
            name="analogy_a", shape=[None], dtype='int64')
        self.analogy_b = fluid.data(
            name="analogy_b", shape=[None], dtype='int64')
        self.analogy_c = fluid.data(
            name="analogy_c", shape=[None], dtype='int64')
        self.analogy_d = fluid.data(
            name="analogy_d", shape=[None], dtype='int64')
T
tangwei 已提交
155 156 157
        self._infer_data_var = [
            self.analogy_a, self.analogy_b, self.analogy_c, self.analogy_d
        ]
M
add w2v  
malin10 已提交
158 159

        self._infer_data_loader = fluid.io.DataLoader.from_generator(
T
tangwei 已提交
160 161 162 163
            feed_list=self._infer_data_var,
            capacity=64,
            use_double_buffer=False,
            iterable=False)
C
chengmo 已提交
164

M
malin10 已提交
165
    def infer_net(self, inputs):
M
add w2v  
malin10 已提交
166 167 168
        def embedding_layer(input, table_name, initializer_instance=None):
            emb = fluid.embedding(
                input=input,
M
malin10 已提交
169
                size=[self.sparse_feature_number, self.sparse_feature_dim],
M
add w2v  
malin10 已提交
170 171
                param_attr=table_name)
            return emb
C
chengmo 已提交
172

M
malin10 已提交
173 174
        all_label = np.arange(self.sparse_feature_number).reshape(
            self.sparse_feature_number).astype('int32')
C
chengmo 已提交
175 176
        self.all_label = fluid.layers.cast(
            x=fluid.layers.assign(all_label), dtype='int64')
M
add w2v  
malin10 已提交
177
        emb_all_label = embedding_layer(self.all_label, "emb")
M
malin10 已提交
178 179 180
        emb_a = embedding_layer(inputs[0], "emb")
        emb_b = embedding_layer(inputs[1], "emb")
        emb_c = embedding_layer(inputs[2], "emb")
C
chengmo 已提交
181

M
add w2v  
malin10 已提交
182 183 184 185
        target = fluid.layers.elementwise_add(
            fluid.layers.elementwise_sub(emb_b, emb_a), emb_c)

        emb_all_label_l2 = fluid.layers.l2_normalize(x=emb_all_label, axis=1)
C
chengmo 已提交
186 187
        dist = fluid.layers.matmul(
            x=target, y=emb_all_label_l2, transpose_y=True)
M
add w2v  
malin10 已提交
188
        values, pred_idx = fluid.layers.topk(input=dist, k=4)
T
tangwei 已提交
189 190
        label = fluid.layers.expand(
            fluid.layers.unsqueeze(
M
malin10 已提交
191
                inputs[3], axes=[1]), expand_times=[1, 4])
M
add w2v  
malin10 已提交
192 193
        label_ones = fluid.layers.fill_constant_batch_size_like(
            label, shape=[-1, 1], value=1.0, dtype='float32')
T
tangwei 已提交
194 195
        right_cnt = fluid.layers.reduce_sum(input=fluid.layers.cast(
            fluid.layers.equal(pred_idx, label), dtype='float32'))
M
add w2v  
malin10 已提交
196 197
        total_cnt = fluid.layers.reduce_sum(label_ones)

M
malin10 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
        # global_right_cnt = fluid.layers.create_global_var(
        #     name="global_right_cnt",
        #     persistable=True,
        #     dtype='float32',
        #     shape=[1],
        #     value=0)
        # global_total_cnt = fluid.layers.create_global_var(
        #     name="global_total_cnt",
        #     persistable=True,
        #     dtype='float32',
        #     shape=[1],
        #     value=0)
        # global_right_cnt.stop_gradient = True
        # global_total_cnt.stop_gradient = True

        # tmp1 = fluid.layers.elementwise_add(right_cnt, global_right_cnt)
        # fluid.layers.assign(tmp1, global_right_cnt)
        # tmp2 = fluid.layers.elementwise_add(total_cnt, global_total_cnt)
        # fluid.layers.assign(tmp2, global_total_cnt)

        # acc = fluid.layers.elementwise_div(
        #     global_right_cnt, global_total_cnt, name="total_acc")
        acc = fluid.layers.elementwise_div(right_cnt, total_cnt, name="acc")
M
add w2v  
malin10 已提交
221
        self._infer_results['acc'] = acc