model.py 10.0 KB
Newer Older
M
add w2v  
malin10 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import numpy as np
import paddle.fluid as fluid

from fleetrec.core.utils import envs
from fleetrec.core.model import Model as ModelBase


class Model(ModelBase):
    def __init__(self, config):
        ModelBase.__init__(self, config)

    def input(self):
        neg_num = int(envs.get_global_env("hyper_parameters.neg_num", None, self._namespace))
        self.input_word = fluid.data(name="input_word", shape=[None, 1], dtype='int64')
        self.true_word = fluid.data(name='true_label', shape=[None, 1], dtype='int64')
        self._data_var.append(self.input_word)
        self._data_var.append(self.true_word)
        with_shuffle_batch = bool(int(envs.get_global_env("hyper_parameters.with_shuffle_batch", None, self._namespace)))
        if not with_shuffle_batch:
            self.neg_word = fluid.data(name="neg_label", shape=[None, neg_num], dtype='int64')
            self._data_var.append(self.neg_word)

        if self._platform != "LINUX":
            self._data_loader = fluid.io.DataLoader.from_generator(
                feed_list=self._data_var, capacity=64, use_double_buffer=False, iterable=False)

    def net(self):
        is_distributed = True if envs.get_trainer() == "CtrTrainer" else False
        neg_num = int(envs.get_global_env("hyper_parameters.neg_num", None, self._namespace))
        sparse_feature_number = envs.get_global_env("hyper_parameters.sparse_feature_number", None, self._namespace)
        sparse_feature_dim = envs.get_global_env("hyper_parameters.sparse_feature_dim", None, self._namespace)
        with_shuffle_batch = bool(int(envs.get_global_env("hyper_parameters.with_shuffle_batch", None, self._namespace)))

        def embedding_layer(input, table_name, emb_dim, initializer_instance=None, squeeze=False):
            emb = fluid.embedding(
                input=input,
                is_sparse=True,
                is_distributed=is_distributed,
                size=[sparse_feature_number, emb_dim],
                param_attr=fluid.ParamAttr(
                    name=table_name,
                    initializer=initializer_instance),
            )
            if squeeze:
                return fluid.layers.squeeze(input=emb, axes=[1])
            else:
                return emb

        init_width = 0.5 / sparse_feature_dim
        emb_initializer = fluid.initializer.Uniform(-init_width, init_width)
        emb_w_initializer = fluid.initializer.Constant(value=0.0)

        input_emb = embedding_layer(self.input_word, "emb", sparse_feature_dim, emb_initializer, True)
        true_emb_w = embedding_layer(self.true_word, "emb_w", sparse_feature_dim, emb_w_initializer, True)
        true_emb_b = embedding_layer(self.true_word, "emb_b", 1, emb_w_initializer, True)
    
        if with_shuffle_batch:
            neg_emb_w_list = []
            for i in range(neg_num):
                neg_emb_w_list.append(fluid.contrib.layers.shuffle_batch(true_emb_w))  # shuffle true_word
            neg_emb_w_concat = fluid.layers.concat(neg_emb_w_list, axis=0)      
            neg_emb_w = fluid.layers.reshape(neg_emb_w_concat, shape=[-1, neg_num, sparse_feature_dim])
        
            neg_emb_b_list = []
            for i in range(neg_num):
                neg_emb_b_list.append(fluid.contrib.layers.shuffle_batch(true_emb_b))  # shuffle true_word
            neg_emb_b = fluid.layers.concat(neg_emb_b_list, axis=0)
            neg_emb_b_vec = fluid.layers.reshape(neg_emb_b, shape=[-1, neg_num])
 
        else:
            neg_emb_w = embedding_layer(self.neg_word, "emb_w", sparse_feature_dim, emb_w_initializer)
            neg_emb_b = embedding_layer(self.neg_word, "emb_b", 1, emb_w_initializer)
            neg_emb_b_vec = fluid.layers.reshape(neg_emb_b, shape=[-1, neg_num])
        
        true_logits = fluid.layers.elementwise_add(
            fluid.layers.reduce_sum(
                fluid.layers.elementwise_mul(input_emb, true_emb_w),
                dim=1,
                keep_dim=True),
            true_emb_b)

        input_emb_re = fluid.layers.reshape(
	    input_emb, shape=[-1, 1, sparse_feature_dim])
        neg_matmul = fluid.layers.matmul(input_emb_re, neg_emb_w, transpose_y=True)
        neg_logits = fluid.layers.elementwise_add(
            fluid.layers.reshape(neg_matmul, shape=[-1, neg_num]),
            neg_emb_b_vec)
        
	label_ones = fluid.layers.fill_constant_batch_size_like(
            true_logits, shape=[-1, 1], value=1.0, dtype='float32')
        label_zeros = fluid.layers.fill_constant_batch_size_like(
            true_logits, shape=[-1, neg_num], value=0.0, dtype='float32')
    
        true_xent = fluid.layers.sigmoid_cross_entropy_with_logits(true_logits,
                                                                   label_ones)
        neg_xent = fluid.layers.sigmoid_cross_entropy_with_logits(neg_logits,
                                                                  label_zeros)
        cost = fluid.layers.elementwise_add(
            fluid.layers.reduce_sum(
                true_xent, dim=1),
            fluid.layers.reduce_sum(
                neg_xent, dim=1))
        self.avg_cost = fluid.layers.reduce_mean(cost)
        global_right_cnt = fluid.layers.create_global_var(name="global_right_cnt", persistable=True, dtype='float32', shape=[1], value=0)
        global_total_cnt = fluid.layers.create_global_var(name="global_total_cnt", persistable=True, dtype='float32', shape=[1], value=0)
        global_right_cnt.stop_gradient = True
        global_total_cnt.stop_gradient = True 

    def avg_loss(self):
        self._cost = self.avg_cost

    def metrics(self):
        self._metrics["LOSS"] = self.avg_cost

    def train_net(self):
        self.input()
        self.net()
        self.avg_loss()
        self.metrics()

    def optimizer(self):
        learning_rate = envs.get_global_env("hyper_parameters.learning_rate", None, self._namespace)
        decay_steps = envs.get_global_env("hyper_parameters.decay_steps", None, self._namespace)
        decay_rate = envs.get_global_env("hyper_parameters.decay_rate", None, self._namespace)
        optimizer = fluid.optimizer.SGD(
            learning_rate=fluid.layers.exponential_decay(
                learning_rate=learning_rate,
                decay_steps=decay_steps,
                decay_rate=decay_rate,
                staircase=True))
        return optimizer

    def analogy_input(self):
        sparse_feature_number = envs.get_global_env("hyper_parameters.sparse_feature_number", None, self._namespace)
	self.analogy_a = fluid.data(name="analogy_a", shape=[None], dtype='int64')
        self.analogy_b = fluid.data(name="analogy_b", shape=[None], dtype='int64')
        self.analogy_c = fluid.data(name="analogy_c", shape=[None], dtype='int64')
        self.analogy_d = fluid.data(name="analogy_d", shape=[None], dtype='int64')
        self._infer_data_var = [self.analogy_a, self.analogy_b, self.analogy_c, self.analogy_d]

        self._infer_data_loader = fluid.io.DataLoader.from_generator(
            feed_list=self._infer_data_var, capacity=64, use_double_buffer=False, iterable=False)
 
    def infer_net(self):
        sparse_feature_dim = envs.get_global_env("hyper_parameters.sparse_feature_dim", None, self._namespace)
        sparse_feature_number = envs.get_global_env("hyper_parameters.sparse_feature_number", None, self._namespace)

        def embedding_layer(input, table_name, initializer_instance=None):
            emb = fluid.embedding(
                input=input,
                size=[sparse_feature_number, sparse_feature_dim],
                param_attr=table_name)
            return emb
        
        self.analogy_input()
        all_label = np.arange(sparse_feature_number).reshape(sparse_feature_number).astype('int32')
        self.all_label = fluid.layers.cast(x=fluid.layers.assign(all_label), dtype='int64')
        emb_all_label = embedding_layer(self.all_label, "emb")
        emb_a = embedding_layer(self.analogy_a, "emb")
        emb_b = embedding_layer(self.analogy_b, "emb")
        emb_c = embedding_layer(self.analogy_c, "emb")
        
        target = fluid.layers.elementwise_add(
            fluid.layers.elementwise_sub(emb_b, emb_a), emb_c)

        emb_all_label_l2 = fluid.layers.l2_normalize(x=emb_all_label, axis=1)
        dist = fluid.layers.matmul(x=target, y=emb_all_label_l2, transpose_y=True)
        values, pred_idx = fluid.layers.topk(input=dist, k=4)
        label = fluid.layers.expand(fluid.layers.unsqueeze(self.analogy_d, axes=[1]), expand_times=[1, 4])
        label_ones = fluid.layers.fill_constant_batch_size_like(
            label, shape=[-1, 1], value=1.0, dtype='float32')
        right_cnt = fluid.layers.reduce_sum(
            input=fluid.layers.cast(fluid.layers.equal(pred_idx, label), dtype='float32'))
        total_cnt = fluid.layers.reduce_sum(label_ones)

        global_right_cnt = fluid.layers.create_global_var(name="global_right_cnt", persistable=True, dtype='float32', shape=[1], value=0)
        global_total_cnt = fluid.layers.create_global_var(name="global_total_cnt", persistable=True, dtype='float32', shape=[1], value=0)
        global_right_cnt.stop_gradient = True
        global_total_cnt.stop_gradient = True

        tmp1 = fluid.layers.elementwise_add(right_cnt, global_right_cnt)
        fluid.layers.assign(tmp1, global_right_cnt)
        tmp2 = fluid.layers.elementwise_add(total_cnt, global_total_cnt)
        fluid.layers.assign(tmp2, global_total_cnt)
        
        acc = fluid.layers.elementwise_div(global_right_cnt, global_total_cnt, name="total_acc")
        self._infer_results['acc'] = acc