network.py 18.1 KB
Newer Older
C
Chengmo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import warnings

import paddle.fluid as fluid
from paddlerec.core.utils import envs
from paddlerec.core.trainers.framework.dataset import DataLoader, QueueDataset

__all__ = [
    "NetworkBase", "SingleNetwork", "PSNetwork", "PslibNetwork",
C
Chengmo 已提交
26
    "CollectiveNetwork", "FineTuningNetwork"
C
Chengmo 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
]


class NetworkBase(object):
    """R
    """

    def __init__(self, context):
        pass

    def build_network(self, context):
        pass


class SingleNetwork(NetworkBase):
    """R
    """

    def __init__(self, context):
        print("Running SingleNetwork.")
        pass

    def build_network(self, context):
        context["model"] = {}
T
tangwei 已提交
51
        for model_dict in context["phases"]:
C
Chengmo 已提交
52 53 54 55 56 57 58 59 60
            context["model"][model_dict["name"]] = {}
            train_program = fluid.Program()
            startup_program = fluid.Program()
            scope = fluid.Scope()
            dataset_name = model_dict["dataset_name"]

            with fluid.program_guard(train_program, startup_program):
                with fluid.unique_name.guard():
                    with fluid.scope_guard(scope):
T
tangwei 已提交
61 62
                        model_path = envs.os_path_adapter(
                            envs.workspace_adapter(model_dict["model"]))
T
tangwei 已提交
63 64
                        model = envs.lazy_instance_by_fliename(
                            model_path, "Model")(context["env"])
C
Chengmo 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

                        if context["is_infer"]:
                            model._infer_data_var = model.input_data(
                                is_infer=context["is_infer"],
                                dataset_name=model_dict["dataset_name"])
                        else:
                            model._data_var = model.input_data(
                                dataset_name=model_dict["dataset_name"])

                        if envs.get_global_env("dataset." + dataset_name +
                                               ".type") == "DataLoader":
                            model._init_dataloader(
                                is_infer=context["is_infer"])
                            data_loader = DataLoader(context)
                            data_loader.get_dataloader(context, dataset_name,
                                                       model._data_loader)

                        if context["is_infer"]:
                            model.net(model._infer_data_var,
                                      context["is_infer"])
                        else:
                            model.net(model._data_var, context["is_infer"])
                            optimizer = model.optimizer()
                            optimizer.minimize(model._cost)
            context["model"][model_dict["name"]][
                "main_program"] = train_program
            context["model"][model_dict["name"]][
                "startup_program"] = startup_program
            context["model"][model_dict["name"]]["scope"] = scope
            context["model"][model_dict["name"]]["model"] = model
            context["model"][model_dict["name"]][
C
Chengmo 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
                "default_main_program"] = train_program.clone()
            context["model"][model_dict["name"]]["compiled_program"] = None

        context["dataset"] = {}
        for dataset in context["env"]["dataset"]:
            type = envs.get_global_env("dataset." + dataset["name"] + ".type")

            if type == "QueueDataset":
                dataset_class = QueueDataset(context)
                context["dataset"][dataset[
                    "name"]] = dataset_class.create_dataset(dataset["name"],
                                                            context)

        context["status"] = "startup_pass"


class FineTuningNetwork(NetworkBase):
    """R
    """

    def __init__(self, context):
        print("Running FineTuningNetwork.")

    def build_network(self, context):
        context["model"] = {}
        for model_dict in context["phases"]:
            context["model"][model_dict["name"]] = {}
            train_program = fluid.Program()
            startup_program = fluid.Program()
            scope = fluid.Scope()
            dataset_name = model_dict["dataset_name"]

            with fluid.program_guard(train_program, startup_program):
                with fluid.unique_name.guard():
                    with fluid.scope_guard(scope):
                        model_path = envs.os_path_adapter(
                            envs.workspace_adapter(model_dict["model"]))
                        model = envs.lazy_instance_by_fliename(
                            model_path, "Model")(context["env"])

                        model._data_var = model.input_data(
                            dataset_name=model_dict["dataset_name"])

                        if envs.get_global_env("dataset." + dataset_name +
                                               ".type") == "DataLoader":
                            model._init_dataloader(
                                is_infer=context["is_infer"])
                            data_loader = DataLoader(context)
                            data_loader.get_dataloader(context, dataset_name,
                                                       model._data_loader)

                        model.net(model._data_var, context["is_infer"])

                        finetuning_varnames = envs.get_global_env(
                            "runner." + context["runner_name"] +
                            ".finetuning_aspect_varnames",
                            default_value=[])

                        if len(finetuning_varnames) == 0:
                            raise ValueError(
                                "nothing need to be fine tuning, you may use other traning mode"
                            )

                        if len(finetuning_varnames) != 1:
                            raise ValueError(
                                "fine tuning mode can only accept one varname now"
                            )

                        varname = finetuning_varnames[0]
                        finetuning_vars = train_program.global_block().vars[
                            varname]
                        finetuning_vars.stop_gradient = True
                        optimizer = model.optimizer()
                        optimizer.minimize(model._cost)

            context["model"][model_dict["name"]][
                "main_program"] = train_program
            context["model"][model_dict["name"]][
                "startup_program"] = startup_program
            context["model"][model_dict["name"]]["scope"] = scope
            context["model"][model_dict["name"]]["model"] = model
            context["model"][model_dict["name"]][
C
Chengmo 已提交
178
                "default_main_program"] = train_program.clone()
179
            context["model"][model_dict["name"]]["compiled_program"] = None
C
Chengmo 已提交
180 181

        context["dataset"] = {}
T
tangwei 已提交
182
        for dataset in context["env"]["dataset"]:
T
tangwei 已提交
183
            type = envs.get_global_env("dataset." + dataset["name"] + ".type")
184 185

            if type == "QueueDataset":
C
Chengmo 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
                dataset_class = QueueDataset(context)
                context["dataset"][dataset[
                    "name"]] = dataset_class.create_dataset(dataset["name"],
                                                            context)

        context["status"] = "startup_pass"


class PSNetwork(NetworkBase):
    def __init__(self, context):
        print("Running PSNetwork.")
        pass

    def build_network(self, context):
        context["model"] = {}
T
tangwei 已提交
201
        if len(context["env"]["phase"]) > 1:
C
Chengmo 已提交
202 203 204 205
            warnings.warn(
                "Cluster Train Only Support One Phase.",
                category=UserWarning,
                stacklevel=2)
T
tangwei 已提交
206
        model_dict = context["env"]["phase"][0]
C
Chengmo 已提交
207 208 209
        context["model"][model_dict["name"]] = {}
        dataset_name = model_dict["dataset_name"]

T
tangwei 已提交
210 211
        model_path = envs.os_path_adapter(
            envs.workspace_adapter(model_dict["model"]))
T
tangwei 已提交
212 213
        model = envs.lazy_instance_by_fliename(model_path,
                                               "Model")(context["env"])
C
Chengmo 已提交
214 215 216 217 218
        model._data_var = model.input_data(
            dataset_name=model_dict["dataset_name"])
        if envs.get_global_env("dataset." + dataset_name +
                               ".type") == "DataLoader":
            model._init_dataloader(is_infer=False)
219

C
Chengmo 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233
        model.net(model._data_var, False)
        optimizer = model.optimizer()
        strategy = self._build_strategy(context)
        optimizer = context["fleet"].distributed_optimizer(optimizer, strategy)
        optimizer.minimize(model._cost)

        context["model"][model_dict["name"]]["main_program"] = context[
            "fleet"].main_program
        context["model"][model_dict["name"]]["startup_program"] = context[
            "fleet"].startup_program
        context["model"][model_dict["name"]]["scope"] = fluid.global_scope()
        context["model"][model_dict["name"]]["model"] = model
        context["model"][model_dict["name"]]["default_main_program"] = context[
            "fleet"].main_program.clone()
234
        context["model"][model_dict["name"]]["compiled_program"] = None
C
Chengmo 已提交
235 236 237 238 239 240

        if context["fleet"].is_server():
            self._server(context)
        else:
            context["fleet"].init_worker()
            context["dataset"] = {}
L
liuyuhui 已提交
241 242
            for phase in context["env"]["phase"]:
                type = envs.get_global_env("dataset." + phase["dataset_name"] +
T
tangwei 已提交
243
                                           ".type")
244 245 246 247 248
                if type == "DataLoader":
                    data_loader = DataLoader(context)
                    data_loader.get_dataloader(context, dataset_name,
                                               model._data_loader)
                elif type == "QueueDataset":
C
Chengmo 已提交
249
                    dataset_class = QueueDataset(context)
L
liuyuhui 已提交
250 251 252
                    context["dataset"][phase[
                        "dataset_name"]] = dataset_class.create_dataset(
                            phase["dataset_name"], context)
C
Chengmo 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
            context["status"] = "startup_pass"

    def _build_strategy(self, context):
        from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory
        mode = envs.get_runtime_environ("train.trainer.strategy")
        assert mode in ["async", "geo", "sync", "half_async"]

        strategy = None

        if mode == "async":
            strategy = StrategyFactory.create_async_strategy()
        elif mode == "geo":
            push_num = envs.get_global_env("train.strategy.mode.push_num", 100)
            strategy = StrategyFactory.create_geo_strategy(push_num)
        elif mode == "sync":
            strategy = StrategyFactory.create_sync_strategy()
        elif mode == "half_async":
            strategy = StrategyFactory.create_half_async_strategy()

        assert strategy is not None

        context["strategy"] = strategy
        return strategy

    def _server(self, context):
        init_model_path = envs.get_global_env(
            "runner." + context["runner_name"] + ".init_model_path",
            default_value="")
        context["fleet"].init_server(init_model_path)
        context["fleet"].run_server()
        context['status'] = "terminal_pass"


class PslibNetwork(NetworkBase):
    def __init__(self, context):
        print("Running PslibNetwork.")
        pass

    def build_network(self, context):
        context["model"] = {}
T
tangwei 已提交
293
        if len(context["env"]["phase"]) > 1:
C
Chengmo 已提交
294 295 296 297
            warnings.warn(
                "Cluster Train Only Support One Phase.",
                category=UserWarning,
                stacklevel=2)
T
tangwei 已提交
298
        model_dict = context["env"]["phase"][0]
C
Chengmo 已提交
299 300 301 302 303 304 305 306 307
        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
        dataset_name = model_dict["dataset_name"]

        with fluid.program_guard(train_program, startup_program):
            with fluid.unique_name.guard():
                with fluid.scope_guard(scope):
                    context["model"][model_dict["name"]] = {}
T
tangwei 已提交
308 309
                    model_path = envs.os_path_adapter(
                        envs.workspace_adapter(model_dict["model"]))
T
tangwei 已提交
310 311
                    model = envs.lazy_instance_by_fliename(
                        model_path, "Model")(context["env"])
C
Chengmo 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
                    model._data_var = model.input_data(
                        dataset_name=model_dict["dataset_name"])
                    if envs.get_global_env("dataset." + dataset_name +
                                           ".type") == "DataLoader":
                        model._init_dataloader(is_infer=False)
                    model.net(model._data_var, False)
                    optimizer = model.optimizer()

                    optimizer = context["fleet"].distributed_optimizer(
                        optimizer)
                    optimizer.minimize([model._cost], [fluid.global_scope()])

                    context["model"][model_dict["name"]][
                        "main_program"] = train_program
                    context["model"][model_dict["name"]][
                        "startup_program"] = startup_program
                    context["model"][model_dict["name"]]["scope"] = scope
                    context["model"][model_dict["name"]]["model"] = model
                    context["model"][model_dict["name"]][
                        "default_main_program"] = train_program.clone()
332 333
                    context["model"][model_dict["name"]][
                        "compile_program"] = None
C
Chengmo 已提交
334 335 336 337 338

        if context["fleet"].is_server():
            self._server(context)
        else:
            context["dataset"] = {}
L
liuyuhui 已提交
339
            for phase in context["env"]["phase"]:
T
tangwei 已提交
340 341
                type = envs.get_global_env("dataset." + dataset["name"] +
                                           ".type")
342 343 344 345 346
                if type == "DataLoader":
                    data_loader = DataLoader(context)
                    data_loader.get_dataloader(context, dataset_name, context[
                        "model"][model_dict["name"]]["model"]._data_loader)
                elif type == "QueueDataset":
C
Chengmo 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
                    dataset_class = QueueDataset(context)
                    context["dataset"][dataset[
                        "name"]] = dataset_class.create_dataset(
                            dataset["name"], context)
            context["status"] = "startup_pass"

    def _server(self, context):
        context["fleet"].run_server()
        context['status'] = "terminal_pass"


class CollectiveNetwork(NetworkBase):
    def __init__(self, context):
        print("Running CollectiveNetwork.")
        pass

    def build_network(self, context):
        context["model"] = {}
T
tangwei 已提交
365
        if len(context["env"]["phase"]) > 1:
C
Chengmo 已提交
366 367 368 369
            warnings.warn(
                "Cluster Train Only Support One Phase.",
                category=UserWarning,
                stacklevel=2)
T
tangwei 已提交
370
        model_dict = context["env"]["phase"][0]
C
Chengmo 已提交
371 372 373 374 375 376 377 378
        context["model"][model_dict["name"]] = {}
        dataset_name = model_dict["dataset_name"]

        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
        with fluid.program_guard(train_program, startup_program):
            with fluid.scope_guard(scope):
T
tangwei 已提交
379 380
                model_path = envs.os_path_adapter(
                    envs.workspace_adapter(model_dict["model"]))
T
tangwei 已提交
381

C
Chengmo 已提交
382
                model = envs.lazy_instance_by_fliename(model_path,
T
tangwei 已提交
383
                                                       "Model")(context["env"])
C
Chengmo 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
                model._data_var = model.input_data(
                    dataset_name=model_dict["dataset_name"])
                if envs.get_global_env("dataset." + dataset_name +
                                       ".type") == "DataLoader":
                    model._init_dataloader(is_infer=False)
                    data_loader = DataLoader(context)
                    data_loader.get_dataloader(context, dataset_name,
                                               model._data_loader)
                model.net(model._data_var, False)
                optimizer = model.optimizer()
                strategy = self._build_strategy(context)
                optimizer = context["fleet"].distributed_optimizer(optimizer,
                                                                   strategy)
                optimizer.minimize(model._cost)

                context["model"][model_dict["name"]]["main_program"] = context[
                    "fleet"].main_program
                context["model"][model_dict["name"]][
                    "startup_program"] = startup_program
                context["model"][model_dict["name"]]["scope"] = scope
                context["model"][model_dict["name"]]["model"] = model
                context["model"][model_dict["name"]][
                    "default_main_program"] = train_program
407
                context["model"][model_dict["name"]]["compiled_program"] = None
C
Chengmo 已提交
408 409

        context["dataset"] = {}
T
tangwei 已提交
410
        for dataset in context["env"]["dataset"]:
T
tangwei 已提交
411
            type = envs.get_global_env("dataset." + dataset["name"] + ".type")
412 413 414 415
            if type == "QueueDataset":
                raise ValueError(
                    "Collective don't support QueueDataset training, please use DataLoader."
                )
C
Chengmo 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428
                dataset_class = QueueDataset(context)
                context["dataset"][dataset[
                    "name"]] = dataset_class.create_dataset(dataset["name"],
                                                            context)
        context["status"] = "startup_pass"

    def _build_strategy(self, context):
        from paddle.fluid.incubate.fleet.collective import DistributedStrategy
        exec_strategy = fluid.ExecutionStrategy()
        strategy = DistributedStrategy()
        strategy.exec_strategy = exec_strategy
        context["strategy"] = strategy
        return strategy