network.py 14.6 KB
Newer Older
C
Chengmo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import warnings

import paddle.fluid as fluid
from paddlerec.core.utils import envs
from paddlerec.core.trainers.framework.dataset import DataLoader, QueueDataset

__all__ = [
    "NetworkBase", "SingleNetwork", "PSNetwork", "PslibNetwork",
    "CollectiveNetwork"
]


class NetworkBase(object):
    """R
    """

    def __init__(self, context):
        pass

    def build_network(self, context):
        pass


class SingleNetwork(NetworkBase):
    """R
    """

    def __init__(self, context):
        print("Running SingleNetwork.")
        pass

    def build_network(self, context):
        context["model"] = {}
T
tangwei 已提交
51
        for model_dict in context["phases"]:
C
Chengmo 已提交
52 53 54 55 56 57 58 59 60
            context["model"][model_dict["name"]] = {}
            train_program = fluid.Program()
            startup_program = fluid.Program()
            scope = fluid.Scope()
            dataset_name = model_dict["dataset_name"]

            with fluid.program_guard(train_program, startup_program):
                with fluid.unique_name.guard():
                    with fluid.scope_guard(scope):
T
tangwei 已提交
61 62
                        model_path = envs.os_path_adapter(
                            envs.workspace_adapter(model_dict["model"]))
T
tangwei 已提交
63 64
                        model = envs.lazy_instance_by_fliename(
                            model_path, "Model")(context["env"])
C
Chengmo 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

                        if context["is_infer"]:
                            model._infer_data_var = model.input_data(
                                is_infer=context["is_infer"],
                                dataset_name=model_dict["dataset_name"])
                        else:
                            model._data_var = model.input_data(
                                dataset_name=model_dict["dataset_name"])

                        if envs.get_global_env("dataset." + dataset_name +
                                               ".type") == "DataLoader":
                            model._init_dataloader(
                                is_infer=context["is_infer"])
                            data_loader = DataLoader(context)
                            data_loader.get_dataloader(context, dataset_name,
                                                       model._data_loader)

                        if context["is_infer"]:
                            model.net(model._infer_data_var,
                                      context["is_infer"])
                        else:
                            model.net(model._data_var, context["is_infer"])
                            optimizer = model.optimizer()
                            optimizer.minimize(model._cost)
            context["model"][model_dict["name"]][
                "main_program"] = train_program
            context["model"][model_dict["name"]][
                "startup_program"] = startup_program
            context["model"][model_dict["name"]]["scope"] = scope
            context["model"][model_dict["name"]]["model"] = model
            context["model"][model_dict["name"]][
                "default_main_program"] = train_program.clone()
97
            context["model"][model_dict["name"]]["compiled_program"] = None
C
Chengmo 已提交
98 99

        context["dataset"] = {}
T
tangwei 已提交
100
        for dataset in context["env"]["dataset"]:
T
tangwei 已提交
101
            type = envs.get_global_env("dataset." + dataset["name"] + ".type")
102 103

            if type == "QueueDataset":
C
Chengmo 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
                dataset_class = QueueDataset(context)
                context["dataset"][dataset[
                    "name"]] = dataset_class.create_dataset(dataset["name"],
                                                            context)

        context["status"] = "startup_pass"


class PSNetwork(NetworkBase):
    def __init__(self, context):
        print("Running PSNetwork.")
        pass

    def build_network(self, context):
        context["model"] = {}
T
tangwei 已提交
119
        if len(context["env"]["phase"]) > 1:
C
Chengmo 已提交
120 121 122 123
            warnings.warn(
                "Cluster Train Only Support One Phase.",
                category=UserWarning,
                stacklevel=2)
T
tangwei 已提交
124
        model_dict = context["env"]["phase"][0]
C
Chengmo 已提交
125 126 127
        context["model"][model_dict["name"]] = {}
        dataset_name = model_dict["dataset_name"]

T
tangwei 已提交
128 129
        model_path = envs.os_path_adapter(
            envs.workspace_adapter(model_dict["model"]))
T
tangwei 已提交
130 131
        model = envs.lazy_instance_by_fliename(model_path,
                                               "Model")(context["env"])
C
Chengmo 已提交
132 133 134 135 136
        model._data_var = model.input_data(
            dataset_name=model_dict["dataset_name"])
        if envs.get_global_env("dataset." + dataset_name +
                               ".type") == "DataLoader":
            model._init_dataloader(is_infer=False)
137

C
Chengmo 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151
        model.net(model._data_var, False)
        optimizer = model.optimizer()
        strategy = self._build_strategy(context)
        optimizer = context["fleet"].distributed_optimizer(optimizer, strategy)
        optimizer.minimize(model._cost)

        context["model"][model_dict["name"]]["main_program"] = context[
            "fleet"].main_program
        context["model"][model_dict["name"]]["startup_program"] = context[
            "fleet"].startup_program
        context["model"][model_dict["name"]]["scope"] = fluid.global_scope()
        context["model"][model_dict["name"]]["model"] = model
        context["model"][model_dict["name"]]["default_main_program"] = context[
            "fleet"].main_program.clone()
152
        context["model"][model_dict["name"]]["compiled_program"] = None
C
Chengmo 已提交
153 154 155 156 157 158

        if context["fleet"].is_server():
            self._server(context)
        else:
            context["fleet"].init_worker()
            context["dataset"] = {}
T
tangwei 已提交
159
            for dataset in context["env"]["dataset"]:
T
tangwei 已提交
160 161
                type = envs.get_global_env("dataset." + dataset["name"] +
                                           ".type")
162 163 164 165 166
                if type == "DataLoader":
                    data_loader = DataLoader(context)
                    data_loader.get_dataloader(context, dataset_name,
                                               model._data_loader)
                elif type == "QueueDataset":
C
Chengmo 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
                    dataset_class = QueueDataset(context)
                    context["dataset"][dataset[
                        "name"]] = dataset_class.create_dataset(
                            dataset["name"], context)
            context["status"] = "startup_pass"

    def _build_strategy(self, context):
        from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory
        mode = envs.get_runtime_environ("train.trainer.strategy")
        assert mode in ["async", "geo", "sync", "half_async"]

        strategy = None

        if mode == "async":
            strategy = StrategyFactory.create_async_strategy()
        elif mode == "geo":
            push_num = envs.get_global_env("train.strategy.mode.push_num", 100)
            strategy = StrategyFactory.create_geo_strategy(push_num)
        elif mode == "sync":
            strategy = StrategyFactory.create_sync_strategy()
        elif mode == "half_async":
            strategy = StrategyFactory.create_half_async_strategy()

        assert strategy is not None

        context["strategy"] = strategy
        return strategy

    def _server(self, context):
        init_model_path = envs.get_global_env(
            "runner." + context["runner_name"] + ".init_model_path",
            default_value="")
        context["fleet"].init_server(init_model_path)
        context["fleet"].run_server()
        context['status'] = "terminal_pass"


class PslibNetwork(NetworkBase):
    def __init__(self, context):
        print("Running PslibNetwork.")
        pass

    def build_network(self, context):
        context["model"] = {}
T
tangwei 已提交
211
        if len(context["env"]["phase"]) > 1:
C
Chengmo 已提交
212 213 214 215
            warnings.warn(
                "Cluster Train Only Support One Phase.",
                category=UserWarning,
                stacklevel=2)
T
tangwei 已提交
216
        model_dict = context["env"]["phase"][0]
C
Chengmo 已提交
217 218 219 220 221 222 223 224 225
        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
        dataset_name = model_dict["dataset_name"]

        with fluid.program_guard(train_program, startup_program):
            with fluid.unique_name.guard():
                with fluid.scope_guard(scope):
                    context["model"][model_dict["name"]] = {}
T
tangwei 已提交
226 227
                    model_path = envs.os_path_adapter(
                        envs.workspace_adapter(model_dict["model"]))
T
tangwei 已提交
228 229
                    model = envs.lazy_instance_by_fliename(
                        model_path, "Model")(context["env"])
C
Chengmo 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
                    model._data_var = model.input_data(
                        dataset_name=model_dict["dataset_name"])
                    if envs.get_global_env("dataset." + dataset_name +
                                           ".type") == "DataLoader":
                        model._init_dataloader(is_infer=False)
                    model.net(model._data_var, False)
                    optimizer = model.optimizer()

                    optimizer = context["fleet"].distributed_optimizer(
                        optimizer)
                    optimizer.minimize([model._cost], [fluid.global_scope()])

                    context["model"][model_dict["name"]][
                        "main_program"] = train_program
                    context["model"][model_dict["name"]][
                        "startup_program"] = startup_program
                    context["model"][model_dict["name"]]["scope"] = scope
                    context["model"][model_dict["name"]]["model"] = model
                    context["model"][model_dict["name"]][
                        "default_main_program"] = train_program.clone()
250 251
                    context["model"][model_dict["name"]][
                        "compile_program"] = None
C
Chengmo 已提交
252 253 254 255 256

        if context["fleet"].is_server():
            self._server(context)
        else:
            context["dataset"] = {}
T
tangwei 已提交
257
            for dataset in context["env"]["dataset"]:
T
tangwei 已提交
258 259
                type = envs.get_global_env("dataset." + dataset["name"] +
                                           ".type")
260 261 262 263 264
                if type == "DataLoader":
                    data_loader = DataLoader(context)
                    data_loader.get_dataloader(context, dataset_name, context[
                        "model"][model_dict["name"]]["model"]._data_loader)
                elif type == "QueueDataset":
C
Chengmo 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
                    dataset_class = QueueDataset(context)
                    context["dataset"][dataset[
                        "name"]] = dataset_class.create_dataset(
                            dataset["name"], context)
            context["status"] = "startup_pass"

    def _server(self, context):
        context["fleet"].run_server()
        context['status'] = "terminal_pass"


class CollectiveNetwork(NetworkBase):
    def __init__(self, context):
        print("Running CollectiveNetwork.")
        pass

    def build_network(self, context):
        context["model"] = {}
T
tangwei 已提交
283
        if len(context["env"]["phase"]) > 1:
C
Chengmo 已提交
284 285 286 287
            warnings.warn(
                "Cluster Train Only Support One Phase.",
                category=UserWarning,
                stacklevel=2)
T
tangwei 已提交
288
        model_dict = context["env"]["phase"][0]
C
Chengmo 已提交
289 290 291 292 293 294 295 296
        context["model"][model_dict["name"]] = {}
        dataset_name = model_dict["dataset_name"]

        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
        with fluid.program_guard(train_program, startup_program):
            with fluid.scope_guard(scope):
T
tangwei 已提交
297 298
                model_path = envs.os_path_adapter(
                    envs.workspace_adapter(model_dict["model"]))
T
tangwei 已提交
299

C
Chengmo 已提交
300
                model = envs.lazy_instance_by_fliename(model_path,
T
tangwei 已提交
301
                                                       "Model")(context["env"])
C
Chengmo 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
                model._data_var = model.input_data(
                    dataset_name=model_dict["dataset_name"])
                if envs.get_global_env("dataset." + dataset_name +
                                       ".type") == "DataLoader":
                    model._init_dataloader(is_infer=False)
                    data_loader = DataLoader(context)
                    data_loader.get_dataloader(context, dataset_name,
                                               model._data_loader)
                model.net(model._data_var, False)
                optimizer = model.optimizer()
                strategy = self._build_strategy(context)
                optimizer = context["fleet"].distributed_optimizer(optimizer,
                                                                   strategy)
                optimizer.minimize(model._cost)

                context["model"][model_dict["name"]]["main_program"] = context[
                    "fleet"].main_program
                context["model"][model_dict["name"]][
                    "startup_program"] = startup_program
                context["model"][model_dict["name"]]["scope"] = scope
                context["model"][model_dict["name"]]["model"] = model
                context["model"][model_dict["name"]][
                    "default_main_program"] = train_program
325
                context["model"][model_dict["name"]]["compiled_program"] = None
C
Chengmo 已提交
326 327

        context["dataset"] = {}
T
tangwei 已提交
328
        for dataset in context["env"]["dataset"]:
T
tangwei 已提交
329
            type = envs.get_global_env("dataset." + dataset["name"] + ".type")
330 331 332 333
            if type == "QueueDataset":
                raise ValueError(
                    "Collective don't support QueueDataset training, please use DataLoader."
                )
C
Chengmo 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346
                dataset_class = QueueDataset(context)
                context["dataset"][dataset[
                    "name"]] = dataset_class.create_dataset(dataset["name"],
                                                            context)
        context["status"] = "startup_pass"

    def _build_strategy(self, context):
        from paddle.fluid.incubate.fleet.collective import DistributedStrategy
        exec_strategy = fluid.ExecutionStrategy()
        strategy = DistributedStrategy()
        strategy.exec_strategy = exec_strategy
        context["strategy"] = strategy
        return strategy