model.py 7.5 KB
Newer Older
Z
zhangwenhui03 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
import paddle.fluid.layers.tensor as tensor
import paddle.fluid.layers.control_flow as cf

T
tangwei 已提交
19 20
from paddlerec.core.utils import envs
from paddlerec.core.model import Model as ModelBase
Z
zhangwenhui03 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53


class BowEncoder(object):
    """ bow-encoder """

    def __init__(self):
        self.param_name = ""

    def forward(self, emb):
        return fluid.layers.sequence_pool(input=emb, pool_type='sum')


class GrnnEncoder(object):
    """ grnn-encoder """

    def __init__(self, param_name="grnn", hidden_size=128):
        self.param_name = param_name
        self.hidden_size = hidden_size

    def forward(self, emb):
        fc0 = fluid.layers.fc(input=emb,
                              size=self.hidden_size * 3,
                              param_attr=self.param_name + "_fc.w",
                              bias_attr=False)

        gru_h = fluid.layers.dynamic_gru(
            input=fc0,
            size=self.hidden_size,
            is_reverse=False,
            param_attr=self.param_name + ".param",
            bias_attr=self.param_name + ".bias")
        return fluid.layers.sequence_pool(input=gru_h, pool_type='max')

T
for mat  
tangwei 已提交
54

Z
zhangwenhui03 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
class PairwiseHingeLoss(object):
    def __init__(self, margin=0.8):
        self.margin = margin

    def forward(self, pos, neg):
        loss_part1 = fluid.layers.elementwise_sub(
            tensor.fill_constant_batch_size_like(
                input=pos, shape=[-1, 1], value=self.margin, dtype='float32'),
            pos)
        loss_part2 = fluid.layers.elementwise_add(loss_part1, neg)
        loss_part3 = fluid.layers.elementwise_max(
            tensor.fill_constant_batch_size_like(
                input=loss_part2, shape=[-1, 1], value=0.0, dtype='float32'),
            loss_part2)
        return loss_part3

T
for mat  
tangwei 已提交
71

Z
zhangwenhui03 已提交
72 73 74 75 76 77 78 79 80 81
class Model(ModelBase):
    def __init__(self, config):
        ModelBase.__init__(self, config)

    def get_correct(self, x, y):
        less = tensor.cast(cf.less_than(x, y), dtype='float32')
        correct = fluid.layers.reduce_sum(less)
        return correct

    def train(self):
T
tangwei 已提交
82 83 84 85 86 87
        vocab_size = envs.get_global_env("hyper_parameters.vocab_size", None,
                                         self._namespace)
        emb_dim = envs.get_global_env("hyper_parameters.emb_dim", None,
                                      self._namespace)
        hidden_size = envs.get_global_env("hyper_parameters.hidden_size", None,
                                          self._namespace)
Z
zhangwenhui03 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
        emb_shape = [vocab_size, emb_dim]

        self.user_encoder = GrnnEncoder()
        self.item_encoder = BowEncoder()
        self.pairwise_hinge_loss = PairwiseHingeLoss()

        user_data = fluid.data(
            name="user", shape=[None, 1], dtype="int64", lod_level=1)
        pos_item_data = fluid.data(
            name="p_item", shape=[None, 1], dtype="int64", lod_level=1)
        neg_item_data = fluid.data(
            name="n_item", shape=[None, 1], dtype="int64", lod_level=1)
        self._data_var.extend([user_data, pos_item_data, neg_item_data])

        user_emb = fluid.embedding(
            input=user_data, size=emb_shape, param_attr="emb.item")
        pos_item_emb = fluid.embedding(
            input=pos_item_data, size=emb_shape, param_attr="emb.item")
        neg_item_emb = fluid.embedding(
            input=neg_item_data, size=emb_shape, param_attr="emb.item")
        user_enc = self.user_encoder.forward(user_emb)
        pos_item_enc = self.item_encoder.forward(pos_item_emb)
        neg_item_enc = self.item_encoder.forward(neg_item_emb)
        user_hid = fluid.layers.fc(input=user_enc,
                                   size=hidden_size,
                                   param_attr='user.w',
                                   bias_attr="user.b")
        pos_item_hid = fluid.layers.fc(input=pos_item_enc,
                                       size=hidden_size,
                                       param_attr='item.w',
                                       bias_attr="item.b")
        neg_item_hid = fluid.layers.fc(input=neg_item_enc,
                                       size=hidden_size,
                                       param_attr='item.w',
                                       bias_attr="item.b")
        cos_pos = fluid.layers.cos_sim(user_hid, pos_item_hid)
        cos_neg = fluid.layers.cos_sim(user_hid, neg_item_hid)
        hinge_loss = self.pairwise_hinge_loss.forward(cos_pos, cos_neg)
        avg_cost = fluid.layers.mean(hinge_loss)
        correct = self.get_correct(cos_neg, cos_pos)
T
for mat  
tangwei 已提交
128

Z
zhangwenhui03 已提交
129 130 131 132 133 134 135
        self._cost = avg_cost
        self._metrics["correct"] = correct
        self._metrics["hinge_loss"] = hinge_loss

    def train_net(self):
        self.train()

Z
zhangwenhui03 已提交
136
    def infer(self):
T
tangwei 已提交
137 138 139 140 141 142
        vocab_size = envs.get_global_env("hyper_parameters.vocab_size", None,
                                         self._namespace)
        emb_dim = envs.get_global_env("hyper_parameters.emb_dim", None,
                                      self._namespace)
        hidden_size = envs.get_global_env("hyper_parameters.hidden_size", None,
                                          self._namespace)
Z
zhangwenhui03 已提交
143 144 145 146 147

        user_data = fluid.data(
            name="user", shape=[None, 1], dtype="int64", lod_level=1)
        all_item_data = fluid.data(
            name="all_item", shape=[None, vocab_size], dtype="int64")
T
tangwei 已提交
148 149
        pos_label = fluid.data(
            name="pos_label", shape=[None, 1], dtype="int64")
Z
zhangwenhui03 已提交
150 151
        self._infer_data_var = [user_data, all_item_data, pos_label]
        self._infer_data_loader = fluid.io.DataLoader.from_generator(
T
tangwei 已提交
152 153 154 155
            feed_list=self._infer_data_var,
            capacity=64,
            use_double_buffer=False,
            iterable=False)
Z
zhangwenhui03 已提交
156 157 158 159

        user_emb = fluid.embedding(
            input=user_data, size=[vocab_size, emb_dim], param_attr="emb.item")
        all_item_emb = fluid.embedding(
T
tangwei 已提交
160 161 162 163 164
            input=all_item_data,
            size=[vocab_size, emb_dim],
            param_attr="emb.item")
        all_item_emb_re = fluid.layers.reshape(
            x=all_item_emb, shape=[-1, emb_dim])
Z
zhangwenhui03 已提交
165 166 167 168 169 170 171

        user_encoder = GrnnEncoder()
        user_enc = user_encoder.forward(user_emb)
        user_hid = fluid.layers.fc(input=user_enc,
                                   size=hidden_size,
                                   param_attr='user.w',
                                   bias_attr="user.b")
T
tangwei 已提交
172 173
        user_exp = fluid.layers.expand(
            x=user_hid, expand_times=[1, vocab_size])
Z
zhangwenhui03 已提交
174 175 176 177 178 179 180 181 182 183 184 185
        user_re = fluid.layers.reshape(x=user_exp, shape=[-1, hidden_size])

        all_item_hid = fluid.layers.fc(input=all_item_emb_re,
                                       size=hidden_size,
                                       param_attr='item.w',
                                       bias_attr="item.b")
        cos_item = fluid.layers.cos_sim(X=all_item_hid, Y=user_re)
        all_pre_ = fluid.layers.reshape(x=cos_item, shape=[-1, vocab_size])
        acc = fluid.layers.accuracy(input=all_pre_, label=pos_label, k=20)

        self._infer_results['recall20'] = acc

Z
zhangwenhui03 已提交
186
    def infer_net(self):
Z
zhangwenhui03 已提交
187
        self.infer()